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Time series classification
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Automated medical diagnosis from sensor data



Time series classification
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Common feature

The predictor is a path X : [a, b] — R.




Data representation
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A sample from the class flower x and y at a different speed
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The signature will overcome some of these problems.

> It is a transformation from a path to a sequence of coefficients.
> Independent of time parameterization.
> Encodes geometric properties of the path.

> No loss of information.



Definition and basic properties



Mathematical setting

e A path X : [0,1] — R?. Notation: X;.
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Mathematical setting

e A path X : [0,1] — R?. Notation: X;.
e Assumption: || X||1-var < 0.

e Path integral:
e X is differentiable, Y : [0,1] — R a continuous path.

1 ) 1
/ YedX; = / Y: X{dt.
0 0

e Generalization to || X||1var < 00 via the Riemann-Stieltjes integral.
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Iterated integrals

e X:[0,1] = RY, X = (X',...,X9).
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Iterated integrals

e X:[0,1] = RY, X = (X',...,X9).
Forie{1,...,d},

S'Xp.g = /0 dX, =X/ — X, — a path!
<s<t

For (i,j) € {1,...,d}?,

S (X0 = /

0<s<t

S'(X)po,gdXs = / dX!dX! — a path!

0<r<s<t

Recursively, for (i1, ...,ik) € {1,...,d}¥,
Sl (X0 4 = / dXir. .. dxk.
0<ti<bh< <t <t

o Sli-i)(X)q 7 is the k-fold iterated integral of X along iy, ..., ik.
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Definition
The signature of X is the sequence of real numbers

S(X) = (1,5'(X),...,5%(x), s"D(X), sEA(X),..).
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S(X) = (1,5'(X),...,5%(x), s"D(X), sEA(X),..).

e d=3—(1,2,3,11,12,13,21,22,23,31,32,33,111,112,113,...)

e [ensor notation:

Xt = > Sl-i(X)ey, ® -+ @ €.
(iyeeesik)C{L,...,d K

e Signature:

where
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For X: = (X{, X?), j 2
L —X3 X?—-X
X! = (fol dX} fol dth) = (Xl Xo X o)
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For X, = (X!, X2),
Xt = ! 1 1dX2 =(X{ =X X?-X?
Jo dXi [y dX; 1 0 1 0

o _ foi fo: dXLdx; foi foz dX; dX;
Jo J3dX2dX? [ ¥ dXZdX?
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For X; = (X}, X?),
X! = (fol dX; fy dXt) = (X1 — Xy X —Xo)

X2 — foi joi dXs dXt foi foz dXs dXt
fo fo dXs dXt fo fo dXS dXt

Rank 0: |:| Rank 1: |:H:H:“:H:|

(scalar) (vector)

Rank 2: (matrix) Rank 3:

N
i
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Truncated signature

e Truncated signature at order m:

S™(X) = (1,XH, X%, X™).
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Truncated signature

e Truncated signature at order m:
S™(X) = (1, X5, X2, X™).

e Dimension:
~ dm+1 1
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Geometric interpretation

X2

51.2(x)
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Important example

Linear path
e X :[0,1] — RY a linear path.
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Important example

Linear path
e X :[0,1] — RY a linear path.
e Xy =Xo+ (X1 = Xo)t.

o Forany I = (i1,..., i),

5100 = 2 T[]0~ %)
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Important example

Linear path

X :[0,1] — R? a linear path.
Xe = Xo + (X1 — Xo)t.
Forany | = (i,..., i),

1k
7k71j[

Very useful: in practice, we always deal with piecewise linear paths.

v

> Needed: concatenation operations.
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Chen'’s identity
e X:[a,b] > R?and Y :[b,c] — RY paths.
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Chen'’s identity
e X:[a,b] > R?and Y :[b,c] — RY paths.
e XY :[ac]— RY the concatenation.

e Then
S(X*xY)=5(X)®S(Y).
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Chen'’s identity

X :[a,b] = R? and Y : [b,c] — RY paths.
X *Y :[a,c] = R9 the concatenation.
Then

S(X * Y) = S(X)® S(Y).

> We can compute the signature of piecewise linear paths!
> Data stream of p points and truncation at m: O(pd™) operations.

> Fast packages and libraries available in C++ and Python.
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Uniqueness
If X has at least one monotone coordinate, then S(X) determines X

uniquely up to translations and reparametrizations.
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Uniqueness
If X has at least one monotone coordinate, then S(X) determines X

uniquely up to translations and reparametrizations.

> The signature characterizes paths.
> Trick: add a dummy monotone component to X.

> Important concept of augmentation.

18



Signature approximation

e D compact subset of paths from [0,1] to R? that are not tree-like
equivalent.
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Signature approximation

e D compact subset of paths from [0,1] to R? that are not tree-like
equivalent.

f: D — R continuous.

e Then, for every £ > 0, there exists w € T(R9) such that, for any
XeD,
|F(X) — (w,5(X))| <e.

v

Signature and linear model are happy together!

> This raises many interesting statistical issues.
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Conclusion

> The signature is a good descriptor of a path: combine it with any
machine learning “black box" algorithm.
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Conclusion

> The signature is a good descriptor of a path: combine it with any
machine learning “black box" algorithm.

Dense network

E— S’”(X)[ov” —_— o ——> «Flower»

> Flexible tool and many choices: transformations to the path, domain
of integration...

> Could we find a canonical signature pipeline that would be a
domain-agnostic starting point for practitioners?
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A generalized signature method



Overview

e Goal: systematic comparison of the different variations of the
signature method.
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Overview

e Goal: systematic comparison of the different variations of the
signature method.

Empirical study over 26 datasets of time series classification.

Define a generalised signature method as a framework to capture all

these variations.
e Give practitioners some simple, domain-agnostic guidelines for a first

signature algorithm.
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Framework

e Input: a sequence x € S(R?), where

S(RY) = {(x1, ... %) | x € R, n € NJ.
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e Input: a sequence x € S(R?), where

S(Rd) = {(le 000 7Xn) | Xi € Rd, ne N}

Racketsports dataset A sample x with d = 6, n = 30
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Framework

e Input: a sequence x € S(R?), where
S(RY) = {(x1,...,xa) | x € RY, n € N}.

e Output: a label y € {1,...,q}.

> Racketsports dataset: g = 4
— forehand squash, backhand squash, clear badminton, smash
badminton.
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Framework

> For some e, p € N, an augmentation is a map

O = (r}l,...,Hp)Z S(Rd) — S(Re)p.
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Framework

> For some e, p € N, an augmentation is a map
b= (o ...,0P): S(RY) — S(R®)P.
> For some g € N, a window is a map
W= (W ...,Ww9): S(R®) — S(S(R®)).

> Signature or logsignature transform: S™.

> Rescaling operation ppost OF Ppre.

Feature set
ij ok
Yijk = (Ppost © ™ © ppre 0 W' 0 07)(x).
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Framework

> For some e, p € N, an augmentation is a map

O = ((;17,,,7()/)): S(Rd) — S(Re)p.



Augmentations

Different goals:

> Sensitivity to properties of the path.
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Augmentations

Different goals:

> Sensitivity to properties of the path.

> Dimension reduction.

> Data-dependent transformation — make the path adapted to
signatures.

25



Augmentations

e Time augmentation

o(x) = ((1,x),- .., (nxa)) € SRI).
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e Time augmentation
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26



Augmentations

e Time augmentation

o(x) = ((1,x),- .., (nxa)) € SRI).

il

00 0z 04 08 08 10 00 02 04 08 08 1.0

Sample x € S(R®) Augmented path ¢(x) € S(R")

> Sensitivity to parametrization and ensures signature unigueness.

26



Augmentations

e Lead-lag augmentation

A(x) = ((x1,x1), (%2, x1), (X2, %), - - -, (Xn, Xn)) € S(R?9).
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Augmentations

e Lead-lag augmentation

A(x) = ((x1,x1), (%2, x1), (X2, %), - - -, (Xn, Xn)) € S(R?9).
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Augmentations

e Lead-lag augmentation

A(x) = ((x1,x1), (%2, x1), (X2, %), - - -, (Xn, Xn)) € S(R?9).

00 0z 04 06 08 10 00 02 04 08 08 1.0

Sample x € S(R®) Augmented path ¢(x) € S(R*?)

> Captures the quadratic variation of a process.
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Augmentations

e Basepoint augmentation

(x) = (0,x1,...,x,) € S(RY).
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Augmentations

e Basepoint augmentation
(x) = (0,x1,...,x,) € S(RY).
e Invisibility-reset augmentation

p(x) = ((l,xl)7 ooy (1, xa—1), (1, %), (0, xp), (O, 0)) c S(Rdﬂ),
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Augmentations

e Basepoint augmentation
(x) = (0,x1,...,x,) € S(RY).
e Invisibility-reset augmentation

p(x) = ((l,xl)7 ooy (1, xa—1), (1, %), (0, xp), (O, 0)) c S(Rdﬂ),

> Sensitivity to translations.
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Framework

> For some g € N, a window is a map

W= (W ...,Ww9): S(R®) — S(S(R®)).
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e Global window

R®),

(

W(x) = (x) €S
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Windows

e Sliding window

W(x) = (X1, Xi41,1+-0, X214+1,214¢ - - -) € S(S(R€)),
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Windows

e Expanding window

W(x) = (x1,6, 1,140, X1,214¢; - - -) € S(S(R?)).
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e Dyadic window
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Framework

> Signature or logsignature transform: S™.
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e Signature transform

S™(x) = (1, X5, X2, ... X™).
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Framework

e Signature transform
S™(x) = (1, X5, X2, X™).

e Logsignature transform log(S™(x)), where for any a € T((RY)),

log(a) = Z (_kl) [l = &)@

k>0

> Same information and logsignature less dimensional but no linear
approximation property.
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Signature versus logsignature

Table 1: Typical dimensions of 5”(x) and log(S™(x)).

d=2 d=3 d=6
m=1 2/2 3/3 6/6
m=2 6/3 12/6 42 /21

m=5 62/14 363/80 9330/ 1960
m=7 254 /41 3279 /508 335922 / 49685
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Framework

> Rescaling operation ppost OF ppre.



Framework

> For some e, p € N, an augmentation is a map
b= (o ...,0P): S(RY) — S(R®)P.
> For some g € N, a window is a map
W= (W ...,W9): S(R®) — S(S(R®))".

> Signature or logsignature transform: S™.

> Rescaling operation ppost OF Ppre.

Feature set
ij ok
Yijk = (Ppost © ™ © ppre © W' 0 07)(x).
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Empirical study methodology

e 20 datasets: Human Activities and Postural Transitions, Speech
Commands and 24 datasets from the UEA archive.
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Empirical study methodology

26 datasets: Human Activities and Postural Transitions, Speech
Commands and 24 datasets from the UEA archive.

Definition of a baseline: time augmentation + global window +
signature of depth 3 + pre-signature scaling

(5% © ppre © 6)(%).

Vary each group of options with regards to this baseline.

e /4 classifiers: logistic regression, random forest, GRU, CNN.

— 9984 combinations.

39



Empirical study methodology

e Evaluation of one combination: compute the best accuracy accross
the 4 classifiers.
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Empirical study methodology

e Evaluation of one combination: compute the best accuracy accross

the 4 classifiers.

Window
Dataset Global Sliding Expanding Dyadic
ArticularyWordRecognition 96.3% 89.3% 99.0% 99.0%
AtrialFibrillation 46.7% 46.7% 46.7% 60.0%
BasicMotions 100.0% 100.0% 100.0% 100.0%
CharacterTrajectories 93.2% 94.6% 96.9% 97.1%
Cricket 97.2% 93.1% 97.2% 95.8%
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Empirical study methodology

e Evaluation of one combination: compute the best accuracy accross

the 4 classifiers.

e Compute the average rank over all datasets.
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Empirical study methodology

e Evaluation of one combination: compute the best accuracy accross
the 4 classifiers.

e Compute the average rank over all datasets.

Window
Dataset Global Sliding Expanding Dyadic
ArticularyWordRecognition 3 4 15 15
AtrialFibrillation S] S] 8 1
BasicMotions 2 2 2 2
CharacterTrajectories 4 3 2 1
Cricket 15 4 15 B]
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Empirical study methodology

e Evaluation of one combination: compute the best accuracy accross

the 4 classifiers.

e Compute the average rank over all datasets.

Window

Dataset Global Sliding Expanding Dyadic
ArticularyWordRecognition g 4 15 15
AtrialFibrillation 8 3] & 1
BasicMotions 2 2 2 2
CharacterTrajectories 4 3 2 1
Cricket 3 4 3 3
Average ranks 2.83 3.04 2.17 1.73
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Empirical study methodology

e Evaluation of one combination: compute the best accuracy accross

the 4 classifiers.
e Compute the average rank over all datasets.

e Use a critical differences plot, a global Friedman test, and pairwise
Wilcoxon signed-rank tests at 5% with Holm's alpha correction.

40



> Windows:

4 3 2 1

= |
Sliding —— 1 L Dyadic
Globa EXxpanding
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> Invariance-removing augmentations:

6 5 4 3 2 1
H |
Baselaoint N | S Time + Basepoint
~ None L Time + Invisibility-reset
Invisiblity-reset Time

41



> Other augmentations:

3 2 1

Coordinates projection (1) Q
Learnt projection

Multi-headed stream-preserving

L

—

andom projection

Lead-lag
None .
Coordinates projection (3
Coordinates projection (2

41



> Signature versus logsignature transform:

Signature  Logsignature

Average ranks 1.25 1.75
p-value 0.01
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> Rescalings:

3 2 1

Pre Q _l— None

Post
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Canonical signature pipeline

> Unless the problem is known to be translation or reparameterisation
invariant, then use the time and basepoint augmentations.
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Canonical signature pipeline

> Unless the problem is known to be translation or reparameterisation
invariant, then use the time and basepoint augmentations.

> The lead-lag augmentation should be considered, but we do not
recommend it in general, due to its computational cost.

> Use hierarchical dyadic windows, and the signature transform; both
have a depth hyperparameter that must be optimised.

42



Canonical signature pipeline

— Implement this pipeline on the 30 datasets from the UEA archive and
compare it to benchmark classifiers.
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Canonical signature pipeline

— Implement this pipeline on the 30 datasets from the UEA archive and

compare it to benchmark classifiers.

3

1

DTW.D

ED, I—,

|— Signature pipeline
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Canonical signature pipeline
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Conclusion

e Signatures are a flexible tool.
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A lot of open questions and potential applications.

45



Thank youl!



	Definition and basic properties
	A generalized signature method

