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Time series classification

Automated medical diagnosis from sensor data
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Time series classification

Characters recognition

3



Common feature

The predictor is a path X : [a, b]→ Rd .
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Data representation

A sample from the class flower
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Data representation

A sample from the class flower

x and y coordinates
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Data representation

A sample from the class flower x and y coordinates
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Data representation

A sample from the class flower Time reversed
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Data representation

A sample from the class flower x and y at a different speed
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The signature will overcome some of these problems.

. It is a transformation from a path to a sequence of coefficients.

. Independent of time parameterization.

. Encodes geometric properties of the path.

. No loss of information.
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Definition and basic properties



Mathematical setting

• A path X : [0, 1]→ Rd . Notation: Xt .

• Assumption: ‖X‖1-var <∞.

• Path integral:

• X is differentiable, Y : [0, 1] → R a continuous path.∫ 1

0

YtdX
i
t =

∫ 1

0

YtẊ
i
t dt.

• Generalization to ‖X‖1-var <∞ via the Riemann-Stieltjes integral.
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Iterated integrals

• X : [0, 1]→ Rd , X = (X 1, . . . ,X d).

• For i ∈ {1, . . . , d},

S i (X )[0,t] =

∫
0<s<t

dX i
s = X i

t − X i
0 → a path!

• For (i , j) ∈ {1, . . . , d}2,

S i,j(X )[0,t] =

∫
0<s<t

S i (X )[0,s]dX
j
s =

∫
0<r<s<t

dX i
r dX

j
s → a path!

• Recursively, for (i1, . . . , ik) ∈ {1, . . . , d}k ,

S (i1,...,ik )(X )[0,t] =

∫
0<t1<t2<···<tk<t

dX i1
t1 . . . dX

ik
tk .

• S (i1,...,ik )(X )[0,1] is the k-fold iterated integral of X along i1, . . . , ik .
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Signature

Definition
The signature of X is the sequence of real numbers

S(X ) = (1,S1(X ), . . . ,Sd(X ),S (1,1)(X ),S (1,2)(X ), . . .).

• d = 3→ (1, 2, 3, 11, 12, 13, 21, 22, 23, 31, 32, 33, 111, 112, 113, . . .)

• Tensor notation:

Xk =
∑

(i1,...,ik )⊂{1,...,d}k
S (i1,...,ik )(X )ei1 ⊗ · · · ⊗ eik .

• Signature:

S(X ) = (1,X1,X2, . . . ,Xk, . . .) ∈ T (Rd),

where

T (Rd) = 1⊕Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · ·
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Example

For Xt = (X 1
t ,X

2
t ),

X1 =
(∫ 1

0
dX 1

t

∫ 1

0
dX 2

t

)
=
(
X 1
1 − X 1

0 X 2
1 − X 2

0

)

X2 =

(∫ 1

0

∫ t

0
dX 1

s dX
1
t

∫ 1

0

∫ t

0
dX 1

s dX
2
t∫ 1

0

∫ t

0
dX 2

s dX
1
t

∫ 1

0

∫ t

0
dX 2

s dX
2
t

)
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Truncated signature

• Truncated signature at order m:

Sm(X ) = (1,X1,X2, . . . ,Xm).

• Dimension:

sd(m) =
m∑

k=0

dk =
dm+1 − 1

d − 1
.
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Geometric interpretation

15



Important example

Linear path

• X : [0, 1]→ Rd a linear path.

• Xt = X0 + (X1 − X0)t.

• For any I = (i1, . . . , ik),

S I (X ) =
1

k!

k∏
j=1

(X1 − X0)ij .

. Very useful: in practice, we always deal with piecewise linear paths.

. Needed: concatenation operations.
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Properties 1

Chen’s identity

• X : [a, b]→ Rd and Y : [b, c]→ Rd paths.

• X ∗ Y : [a, c]→ Rd the concatenation.

• Then

S(X ∗ Y ) = S(X )⊗ S(Y ).

. We can compute the signature of piecewise linear paths!

. Data stream of p points and truncation at m: O(pdm) operations.

. Fast packages and libraries available in C++ and Python.
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Properties 2

Uniqueness
If X has at least one monotone coordinate, then S(X ) determines X

uniquely up to translations and reparametrizations.

. The signature characterizes paths.

. Trick: add a dummy monotone component to X .

. Important concept of augmentation.
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Properties 3

Signature approximation

• D compact subset of paths from [0, 1] to Rd that are not tree-like

equivalent.

• f : D → R continuous.

• Then, for every ε > 0, there exists w ∈ T (Rd) such that, for any

X ∈ D, ∣∣f (X )− 〈w ,S(X )〉
∣∣ ≤ ε.

. Signature and linear model are happy together!

. This raises many interesting statistical issues.
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Conclusion

. The signature is a good descriptor of a path: combine it with any

machine learning “black box” algorithm.

. Flexible tool and many choices: transformations to the path, domain

of integration...

. Could we find a canonical signature pipeline that would be a

domain-agnostic starting point for practitioners?
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A generalized signature method



Overview

• Goal: systematic comparison of the different variations of the

signature method.

• Empirical study over 26 datasets of time series classification.

• Define a generalised signature method as a framework to capture all

these variations.

• Give practitioners some simple, domain-agnostic guidelines for a first

signature algorithm.
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Framework

• Input: a sequence x ∈ S(Rd), where

S(Rd) = {(x1, . . . , xn) | xi ∈ Rd , n ∈ N}.
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Framework

• Input: a sequence x ∈ S(Rd), where

S(Rd) = {(x1, . . . , xn) | xi ∈ Rd , n ∈ N}.

Racketsports dataset A sample x with d = 6, n = 30
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Framework

• Input: a sequence x ∈ S(Rd), where

S(Rd) = {(x1, . . . , xn) | xi ∈ Rd , n ∈ N}.

• Output: a label y ∈ {1, . . . , q}.
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Framework

• Input: a sequence x ∈ S(Rd), where

S(Rd) = {(x1, . . . , xn) | xi ∈ Rd , n ∈ N}.

• Output: a label y ∈ {1, . . . , q}.
. Racketsports dataset: q = 4

→ forehand squash, backhand squash, clear badminton, smash

badminton.

22



Framework

. For some e, p ∈ N, an augmentation is a map

φ = (φ1, . . . , φp) : S(Rd)→ S(Re)p.

. For some q ∈ N, a window is a map

W = (W 1, . . . ,W q) : S(Re)→ S(S(Re))q.

. Signature or logsignature transform: Sm.

. Rescaling operation ρpost or ρpre.

Feature set

yi,j,k = (ρpost ◦ Sm ◦ ρpre ◦W i,j ◦ φk)(x).

23



Framework

. For some e, p ∈ N, an augmentation is a map

φ = (φ1, . . . , φp) : S(Rd)→ S(Re)p.

. For some q ∈ N, a window is a map

W = (W 1, . . . ,W q) : S(Re)→ S(S(Re))q.

. Signature or logsignature transform: Sm.

. Rescaling operation ρpost or ρpre.

Feature set

yi,j,k = (ρpost ◦ Sm ◦ ρpre ◦W i,j ◦ φk)(x).

23



Framework

. For some e, p ∈ N, an augmentation is a map

φ = (φ1, . . . , φp) : S(Rd)→ S(Re)p.

. For some q ∈ N, a window is a map

W = (W 1, . . . ,W q) : S(Re)→ S(S(Re))q.

. Signature or logsignature transform: Sm.

. Rescaling operation ρpost or ρpre.

Feature set

yi,j,k = (ρpost ◦ Sm ◦ ρpre ◦W i,j ◦ φk)(x).

23



Framework

. For some e, p ∈ N, an augmentation is a map

φ = (φ1, . . . , φp) : S(Rd)→ S(Re)p.

. For some q ∈ N, a window is a map

W = (W 1, . . . ,W q) : S(Re)→ S(S(Re))q.

. Signature or logsignature transform: Sm.

. Rescaling operation ρpost or ρpre.

Feature set

yi,j,k = (ρpost ◦ Sm ◦ ρpre ◦W i,j ◦ φk)(x).

23



Framework

. For some e, p ∈ N, an augmentation is a map

φ = (φ1, . . . , φp) : S(Rd)→ S(Re)p.

. For some q ∈ N, a window is a map

W = (W 1, . . . ,W q) : S(Re)→ S(S(Re))q.

. Signature or logsignature transform: Sm.

. Rescaling operation ρpost or ρpre.

Feature set

yi,j,k = (ρpost ◦ Sm ◦ ρpre ◦W i,j ◦ φk)(x).

23



Framework

. For some e, p ∈ N, an augmentation is a map

φ = (φ1, . . . , φp) : S(Rd)→ S(Re)p.

. For some q ∈ N, a window is a map

W = (W 1, . . . ,W q) : S(Re)→ S(S(Re))q.

. Signature or logsignature transform: Sm.

. Rescaling operation ρpost or ρpre.

Feature set

yi,j,k = (ρpost ◦ Sm ◦ ρpre ◦W i,j ◦ φk)(x).

24



Augmentations

Different goals:

. Sensitivity to properties of the path.

. Dimension reduction.

. Data-dependent transformation → make the path adapted to

signatures.
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Augmentations

• Time augmentation

φ(x) =
(
(1, x1), . . . , (n, xn)

)
∈ S(Rd+1).

Sample x ∈ S(R6) Augmented path φ(x) ∈ S(R7)

. Sensitivity to parametrization and ensures signature uniqueness.
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Augmentations

• Lead-lag augmentation

φ(x) = ((x1, x1), (x2, x1), (x2, x2), . . . , (xn, xn)) ∈ S(R2d).

Sample x ∈ S(R6) Augmented path φ(x) ∈ S(R12)

. Captures the quadratic variation of a process.
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Augmentations

• Basepoint augmentation

φ(x) = (0, x1, . . . , xn) ∈ S(Rd).

• Invisibility-reset augmentation

φ(x) =
(
(1, x1), . . . , (1, xn−1), (1, xn), (0, xn), (0, 0)

)
∈ S(Rd+1).

. Sensitivity to translations.
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Framework

. For some e, p ∈ N, an augmentation is a map

φ = (φ1, . . . , φp) : S(Rd)→ S(Re)p.

. For some q ∈ N, a window is a map

W = (W 1, . . . ,W q) : S(Re)→ S(S(Re))q.

. Signature or logsignature transform: Sm.

. Rescaling operation ρpost or ρpre.

Feature set

yi,j,k = (ρpost ◦ Sm ◦ ρpre ◦W i,j ◦ φk)(x).
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Windows

• Global window

W (x) = (x) ∈ S(Re),
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Windows

• Sliding window

W (x) = (x1,`, xl+1,l+`, x2l+1,2l+`, . . .) ∈ S(S(Re)),
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Windows

• Expanding window

W (x) = (x1,`, x1,l+`, x1,2l+`, . . .) ∈ S(S(Re)).
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Windows

• Dyadic window

W (x) = (W 1(x), . . . ,W q(x)) ∈ S(S(Re))q.
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Framework

. For some e, p ∈ N, an augmentation is a map
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Framework

• Signature transform

Sm(x) = (1,X1,X2, . . . ,Xm).

• Logsignature transform log(Sm(x)), where for any a ∈ T ((Rd)),

log(a) =
∑
k≥0

(−1)k

k
(1− a)⊗k .

. Same information and logsignature less dimensional but no linear

approximation property.
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Signature versus logsignature

Table 1: Typical dimensions of Sm(x) and log(Sm(x)).

d = 2 d = 3 d = 6

m = 1 2 / 2 3 / 3 6 / 6

m = 2 6 / 3 12 / 6 42 / 21

m = 5 62 / 14 363 / 80 9330 / 1960

m = 7 254 / 41 3279 / 508 335922 / 49685
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Framework

. For some e, p ∈ N, an augmentation is a map

φ = (φ1, . . . , φp) : S(Rd)→ S(Re)p.

. For some q ∈ N, a window is a map
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Empirical study methodology

• 26 datasets: Human Activities and Postural Transitions, Speech

Commands and 24 datasets from the UEA archive.

• Definition of a baseline: time augmentation + global window +

signature of depth 3 + pre-signature scaling

(S3 ◦ ρpre ◦ φ)(x).

• Vary each group of options with regards to this baseline.

• 4 classifiers: logistic regression, random forest, GRU, CNN.

→ 9984 combinations.
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Empirical study methodology

• Evaluation of one combination: compute the best accuracy accross

the 4 classifiers.
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• Evaluation of one combination: compute the best accuracy accross

the 4 classifiers.
Window

Dataset Global Sliding Expanding Dyadic

ArticularyWordRecognition 96.3% 89.3% 99.0% 99.0%

AtrialFibrillation 46.7% 46.7% 46.7% 60.0%

BasicMotions 100.0% 100.0% 100.0% 100.0%

CharacterTrajectories 93.2% 94.6% 96.9% 97.1%

Cricket 97.2% 93.1% 97.2% 95.8%
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Empirical study methodology

• Evaluation of one combination: compute the best accuracy accross

the 4 classifiers.

• Compute the average rank over all datasets.

Window

Dataset Global Sliding Expanding Dyadic

ArticularyWordRecognition 3 4 1.5 1.5

AtrialFibrillation 3 3 3 1

BasicMotions 2 2 2 2

CharacterTrajectories 4 3 2 1

Cricket 1.5 4 1.5 3

.
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Empirical study methodology

• Evaluation of one combination: compute the best accuracy accross

the 4 classifiers.

• Compute the average rank over all datasets.

Window

Dataset Global Sliding Expanding Dyadic

ArticularyWordRecognition 3 4 1.5 1.5

AtrialFibrillation 3 3 3 1

BasicMotions 2 2 2 2

CharacterTrajectories 4 3 2 1

Cricket 1.5 4 1.5 3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Average ranks 2.83 3.04 2.17 1.73
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Empirical study methodology

• Evaluation of one combination: compute the best accuracy accross

the 4 classifiers.

• Compute the average rank over all datasets.

• Use a critical differences plot, a global Friedman test, and pairwise

Wilcoxon signed-rank tests at 5% with Holm’s alpha correction.
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Results

. Windows:
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Results

. Invariance-removing augmentations:
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Results

. Other augmentations:
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Results

. Signature versus logsignature transform:

Signature Logsignature

Average ranks 1.25 1.75

p-value 0.01
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Results

. Rescalings:
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Canonical signature pipeline

. Unless the problem is known to be translation or reparameterisation

invariant, then use the time and basepoint augmentations.

. The lead-lag augmentation should be considered, but we do not

recommend it in general, due to its computational cost.

. Use hierarchical dyadic windows, and the signature transform; both

have a depth hyperparameter that must be optimised.
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Canonical signature pipeline

→ Implement this pipeline on the 30 datasets from the UEA archive and

compare it to benchmark classifiers.
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Canonical signature pipeline
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Conclusion

• Signatures are a flexible tool.

• We are able to find a canonical signature method that represents a

domain-agnostic starting point.

• The combination “signature + generic algorithm” ≈ state-of-the-art.

• Few computing resources and no domain-specific knowledge.

• A lot of open questions and potential applications.
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Thank you!
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