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Overview

• Task: Given a corpus of observations deemed to be normal, determine if a new
observation is normal or anomalous.

• We propose a powerful but simple method for detecting anomalies among
vector-valued observations

• Using path signatures as features, our method addresses the task of detecting
anomalous time series and other types of streamed data

• We demonstrate the effectiveness of our method experimentally using both
univariate and multivariate stream datasets
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Anomaly Detection

• Anomaly detection has been considered widely (Chandola et al., 2009), with
applications in numerous areas e.g. medicine, financial fraud, cyber-security

• Relatively little prior work on deciding whether an entire time series (or other type of
stream) is anomalous (Gupta et al, 2013; Blázquez-García, 2020)

• Natural and widespread approach involves using a distance metric to quantify
unusualness

• What constitutes a useful metric?
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The Variance Norm

Let µ be a probability measure on a vector space V . The covariance quadratic form
Cov(ψ, φ) := Eµ[ψ(x)φ(x)], defined on the dual of V , induces a dual norm defined for
x ∈ V by

‖x‖µ := sup
Cov(φ,φ)≤1

φ(x). (1)

We refer to this norm, computed for the measure µ re-centered to have mean zero, as the
variance norm ‖·‖µ (a.k.a. Mahalanobis norm) associated to µ.
• ‖·‖µ is finite on the linear span of the support of µ, and infinite outside of it.
• ‖·‖µ is well-defined whenever the measure has finite second moments and, in
particular, for the empirical measure associated to a finite set of observations.
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The Conformance Distance

• One possible approach involves using the variance norm directly to quantify
unusualness

• This approach has a significant drawback: In the high-dimensional case, the norm is
huge; in the infinite-dimensional case, the norm is infinite

• Instead, we define the conformance of x to µ to be the distance

dist(x;µ) := inf
y∈supp(µ)

‖x− y‖µ. (2)

• Wemotivate this approach based on the Tsirelson-Sudakov-Borell isoperimetric
inequality

• A new member of the corpus will be far away from most members of the corpus, but
with high probability there will be some members of the corpus to which it is close
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Streams of Data

• We define the space of streams of data in a set Z as

S(Z) := {z = (z1, . . . , zm) : zi ∈ Z,m ∈ N}. (3)

• For example, when a person writes a character by hand, the stroke of the pen
naturally determines a path.

• If we record the trajectory we obtain a two-dimensional stream of data
z = ((x1, y1), (x2, y2), . . . , (xn, yn)) ∈ S(R2).

• Number of points may vary across streams
• Points need not be evenly spaced; point spacing may vary across streams
• To obtain a path from stream (and compute its signature), we interpolate between
successive points in the stream
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Expected Signature and the Variance Norm

• Let C be a finite corpus (or empirical measure) of streams of data.
• Let SigN be the signature of order N.
• Then ‖·‖SigN(C) is the variance norm associated with the empirical measure of SigN(C).

• Letw ∈ RdN . Using the shuffle product x, we define Ai,j := 〈eixej,E[Sig2N(x)]〉 for
i, j = 1, . . . ,dN. We may express the variance norm as

‖w‖2SigN(C) = 〈w,A−1w〉. (4)
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Evaluation

• We have a data set I partitioned into those data deemed to be normal Inormal and
those data deemed to be anomalous Ianomaly

• By further partitioning, we obtain the corpus C ⊂ Inormal which we use for training
• As our testing data Y we use Y := I \ C
• Evaluate performance against three separate datasets

• PenDigits handwritten digit
• Marine vessel traffic data
• UEA & UCR univariate time series

Peter Foster Detection of Anomalous Streams 25th September 2020 8 / 18



PenDigits Dataset

• 10992 instances of hand-written digits captured from 44 subjects
• Each instance represented as a 2-dimensional stream
• Define Inormal as the set of instances representing digitm ∈ [0..9], assign remaining
instances to Ianomaly

• Results based on aggregating conformance scores across digits and computing
receiver operating characteristic area under curve (ROC-AUC)
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PenDigits Dataset – Results

Signature order N = 1
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Signature order N = 5
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ROC-AUC 0.901 0.965 0.983 0.987 0.989
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Marine Vessel Traffic Dataset

• Automatic identification system (AIS) data collected by the US Coast Guard
• Total of 31884021 timestamped geographical (lat/lon) positions recorded for 6 282
distinct vessel identifiers in January 2017

• To evaluate effect of stream length on performance, disintegrate streams into
sub-streams of length D ∈ {4km, 8km, 16km, 32km} between initial and final points

• Deem sub-stream normal if it belongs to vessel with length greater than 100m,
anomalous if length less than or equal to 50m

• Evaluate combinations of stream transformation, with signature order N = 3

• Baseline: Summarise sub-stream using its component-wise mean and covariance,
use as features for isolation forest
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Marine Vessel Traffic Dataset – Example Paths
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Marine Vessel Traffic Dataset – Results

Signature conformance – performance quantified using ROC-AUC
Transformation Sub-stream length D

Lead-lag Time-Diff Inv. Reset 4km 8km 16km 32km
No No No 0.723 0.706 0.705 0.740
No No Yes 0.776 0.789 0.785 0.805
No Yes No 0.810 0.813 0.818 0.848
No Yes Yes 0.839 0.860 0.863 0.879
Yes No No 0.811 0.835 0.824 0.837
Yes No Yes 0.812 0.835 0.833 0.855
Yes Yes No 0.845 0.861 0.862 0.877
Yes Yes Yes 0.848 0.863 0.870 0.891
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Marine Vessel Traffic Dataset – Baseline Comparison

Baseline approach – performance quantified using ROC-AUC
Transformation Sub-stream length D

Lead-lag Time-Diff Inv. Reset 4km 8km 16km 32km
No No No 0.690 0.718 0.717 0.733
No No Yes 0.682 0.698 0.714 0.716
No Yes No 0.771 0.779 0.779 0.803
No Yes Yes 0.745 0.751 0.761 0.797
Yes No No 0.759 0.765 0.766 0.763
Yes No Yes 0.755 0.761 0.763 0.762
Yes Yes No 0.820 0.815 0.823 0.817
Yes Yes Yes 0.810 0.795 0.816 0.815
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UEA & UCR Dataset

• Collection of 28 individual univariate datasets
• Each dataset comprises a set of time series of equal length, together with class labels
• One class designated as the normal class, with all other classes designated as
anomalies

• Include a small amount of anomalous observations in the training corpus
(contamination rates 0.1%, 5%)

• Convert to 2-dimensional stream by applying time-integrated transformation
• Take signatures of order N = 5

• Quantify performance using balanced accuracy with optimal decision threshold
• Baseline: Shapelet method proposed by Beggel et al. (2019)
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UEA & UCR Dataset – Results
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Conclusion

• Motivated by the Tsirelson-Sudakov-Borell isoperimetric inequality, we introduce the
notion of conformance as a method for anomaly detection

• Using signatures as vector-valued features, our approach aims at detecting
anomalous streams

• Approach applicable generally in both univariate and multivariate settings; points in
stream need not be evenly spaced; point spacing may vary across streams; streams
need not be of equal length

• Steam transformations allow us to modify representational properties as required for
the task

• Experimental results suggest that our approach performs strongly in several
application domains, with favourable results obtained compared to baseline
approaches, especially more specialised univariate baseline

• We are currently focussing on a more detailed evaluation of our method applied to
alternative anomaly detection tasks, as well comparing it to other existing approaches
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