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The starting point...

Hambly, B. and Lyons, T., 2010. Uniqueness for the signature
of a path of bounded variation and the reduced path group.
Annals of Mathematics, pp.109-167.
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Paths with concatenation

Definition (Paths)

The set of paths:

P =
{
x : [0, 1]→ Rd : x continuous, x (0) = 0

}
.

Definition (Concatenation)

Given x , y ∈ P , define

(xy) (t) =

{
x (2t) , t ∈

[
0, 1

2

]
;

x (1) + y (2t − 1) , t ∈
[1

2 , 1
]
.

Goal:

Turn (P, ) into a group.
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Definition of a group

Definition

Recall (G , ∗) is a group if
1. (Closure)

x ∗ y ∈ G ∀x , y ∈ G ;

2. (Associativity)

(x ∗ y) ∗ z = x ∗ (y ∗ z) , ∀x , y , z ∈ G .

3. (Identity)

∃e ∈ G x ∗ e = e ∗ x = x ∀x ∈ G .

4. (Inverse)

∀x ∈ G ∃y ∈ G x ∗ y = e
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No inverse

Fact

Path almost never have inverse wrt concatenation.
Identity element:

e (t) = 0 ∀t ∈ [0, 1] .

Candidate for inverse:

←−x (t) = x (1− t)− x (1) .

Then (
x←−x
)

(t) =

{
x (2t) , t ∈

[
0, 1

2

]
;

x (2− 2t) , t ∈
[1

2 , 1
]
.

Unless x = e,
x←−x 6= e.
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No inverse

Need an equivalence relation ∼ on P such that:
1

x←−x ∼ ←−x x ∼ e

2

x1 ∼ x2, y1 ∼ y2 =⇒ x1y1 ∼ x2y2.

All of the followings are ∼ e:
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Tree-like path

Definition (R-tree, Favre-Jonsson04)

If τ is a partially ordered set satisfying:
1.τ has global min. (call r) and pairwise min.
2. For any t ∈ τ , the set below is totally ordered

{s ∈ τ : s � t} ;

3. ∃L : τ → R≥0 map intervals in τ bijectively to intervals in R.
If d (s, t) = L (t) + L (s)− 2L (s ∧ t) ,
then (τ, d) is a R-tree.



Characterising
the set of

(untruncated)
signature

Horatio
Boedihardjo

Tree-like path

Definition (Loop in a tree)

Let τ be a R-tree. A loop in τ is a continuous function
φ : [0, 1]→ τ such that φ (0) = φ (1).

Definition (Tree-like Hambly-Lyons10)

A path x : [0, 1]→ V is tree-like if there exists:
1. a loop φ in a R-tree τ ;
2. a continuous function ψ : τ → V

x = ψ ◦ φ.
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Tree-like equivalence

Definition (Tree-like relation, Hambly-Lyons10)

We define a relation ∼ on paths by x1 ∼ x2 if

x1
←−x2 is a tree-like path.

Theorem (Hambly-Lyons10)

The relation ∼ is an equivalence relation on the set of
bounded variation paths.
The set

RP =
{

[x ]∼ : x : [0, 1]→ Rd continuous, BV, x (0) = 0
}

is called the (BV) Reduced path group.
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Proof of Tree-like equivalence 1

Definition (Signature)

The signature of x : [0, 1]→ Rd is defined by

S (x)0,1 = 1+

∫ 1

0
dxt1+. . .+

∫
0<t1<...<tn<1

dxt1⊗. . .⊗dxtn+. . . .

Theorem (Hambly-Lyons10)

If x has bounded variation (BV),

S (x)0,1 = 1 ⇐⇒ x is tree-like.

Corollary

x1 ∼ x2 ⇐⇒ S (x1)0,1 = S (x2)0,1 for BV paths.
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Reduced paths

Definition (Reduced paths)

A path x : [0, 1]→ Rd is reduced if

length(x) = inf
{
length(α) : S (α)0,1 = S (x)0,1

}
.

Corollary (Hambly-Lyons10)

If x1, x2 are reduced paths with bounded variation,

S (x1)0,1 = S (x2)0,1 ⇐⇒ x1 = x2 up to translation, reparam.
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Proof of uniqueness

Definition

Let Sh (n, k) be the set of bijections
σ : {1, . . . , n + k} → {1, . . . , n + k} such that

σ (1) < σ (2) < . . . < σ (n)

σ (n + 1) < . . . < σ (n + k) .

Lemma (“Shuffle product formula”)

If x =
(
x1, . . . , xd

)
,∫

0<t1<...<tn<t
dx i1t1 . . . dx

in
tn ·
∫

0<t1<...<tk<t
dx in+1

t1 . . . dx in+k
tk

=
∑

σ∈Sh(n,k)

∫
0<t1<...<tn+k<t

dx
iσ−1(1)
t1 . . . dx

iσ−1(n+k)

tn+k
.
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Linear functionals on signatures

Examples

Closure under products(∫
0<t1<t2<t

dx1
t1dx

2
t2

)(∫
0<t1<t

dx1
t1

)
= 2

∫
0<t1<t2<t3<t

dx1
t1dx

1
t2dx

2
t3 +

∫
0<t1<t2<t3<t

dx1
t1dx

2
t2dx

1
t3 .

Closure under integration∫ t

0

(∫
0<t1<t2<u

dx1
t1dx

2
t2 +

∫
0<t1<u

dx1
t1

)
dx2

u

=

∫
0<t1<t2<t3<u

dx1
t1dx

2
t2dx

2
t3 +

∫
0<t1<t2<u

dx1
t1dx

2
t2 .
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Proof

Lemma (B. Geng Lyons Yang 16)

If t → S (x)0,t and t → S (y)0,t both injective.
If x not reparametrisation of y , then
∃ smooth functions L1, L2∫ 1

0
L1

(
S (x)0,u

)
dL2

(
S (x)0,u

)
6=
∫ 1

0
L1

(
S (y)0,u

)
dL2

(
S (y)0,u

)
.

Corollary

If t → S (x)0,t and t → S (y)0,t injective, then

S (x)0,1 = S (y)0,1 ⇐⇒ x reparametrisation of y .
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Isometry

Theorem (Hambly-Lyons isometry)

A path x : [0, 1]→ Rd satisfies ‖x ′t‖ = 1 ∀t and is C 3, then

length (x) = lim sup
n→∞

∥∥∥∥n!

∫
0<t1<...<tn<1

dxt1 ⊗ . . .⊗ dxtn

∥∥∥∥ 1
n

,

(1)
where ‖ · ‖ is the projective norm w.r.t. Euclidean norm.

Open problem

1. Is lim sup in (1) in fact a lim?
2.Extend isometry (1) to reduced bounded variation paths.
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lim = lim sup

Theorem (B.-Geng)

If x is a non tree-like, B.V. path, then there is at most finitely
many n such that∫

0<t1<...<tn<1
dxt1 ⊗ . . .⊗ dxtn = 0.

Theorem (Chang-Lyons-Ni)

If x is a B.V. path, then the following limit exists:

lim
n→∞

∥∥∥∥n!

∫
0<t1<...<tn<1

dxt1 ⊗ . . .⊗ dxtn

∥∥∥∥ 1
n

.
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lim = lim sup

Ideas from Chang-Lyons-Ni.

If x =
(
x1, . . . , xd

)
,∫

0<t1<...<tn<t
dx i1t1 . . . dx

in
tn ·
∫

0<t1<...<tk<t
dx in+1

t1 . . . dx in+k
tk

=
∑

σ∈Sh(n,k)

∫
0<t1<...<tn+k<t

dx
iσ−1(1)
t1 . . . dx

iσ−1(n+k)

tn+k
.

Therefore,∣∣∣∣∫
0<t1<...<tn<t

dx i1t1 . . . dx
in
tn

∣∣∣∣ · ∣∣∣∣∫
0<t1<...<tk<t

dx in+1
t1 . . . dx in+k

tk

∣∣∣∣
≤ |Sh (n, k)| max

σ∈Sh(n,k)

∣∣∣∣∣
∫

0<t1<...<tn+k<t
dx

iσ−1(1)
t1 . . . dx

iσ−1(n+k)

tn+k

∣∣∣∣∣ .
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Proof of isometry (special case)

Lemma (Hambly-Lyons10)

Let Y λ
t be the solution to

dY λ
t = λA (dxt)Y λ

t , Y λ
0 = v ,

with ‖v‖ = 1. If ‖A‖Rd→L(Rn,Rn) = 1, then

lim sup
λ→∞

log ‖Y λ
1 ‖

λ
≤ lim

n→∞

∥∥∥∥n!

∫
0<t1<...<tn<1

dxt1 ⊗ . . .⊗ dxtn

∥∥∥∥ 1
n

.

Y λ
1 = v + . . .+ λn

∫
0<t1<...<tn<1

Adxt1 . . .Adxtnv . . . .
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Isometry

Theorem (Lyons-Xu16)

If ‖x ′‖ = 1 and x is C 1, then

lim sup
n→∞

∥∥∥∥n!

∫
0<t1<...<tn<1

dxt1 ⊗ . . .⊗ dxtn

∥∥∥∥ 1
n

= length (x) .

(2)

Theorem (B.-Geng To Appear)

If d = 2, ‖x ′‖ = 1 and

∀t ∈ [0, 1] ,∃δ, a, s.t Arg
(
x ′s
)
∈ (a, a + π − ε) ∀s ∈ (t − δ, t + δ) .

, then (2) holds.
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Isometry (rough path case)

Theorem (B.-Geng19)

If B is multi-dimensional Brownian motion, there exists
deterministic C > 0, almost surely,

lim sup
n→∞

∥∥∥∥(n2)!

∫
0<t1<...<tn<t

dBt1 ⊗ . . .⊗ dBtn

∥∥∥∥ 2
n

= Ct. (3)

Theorem (B.-Geng-Souris20)

If xt = et(P1+...+PM), where Pi is Lie polynomial of degree i ,
there exists C > 0 depending on M, d ,

C‖PM‖ ≤ lim sup
n→∞

∥∥∥∥( n

M

)
!

∫
0<t1<...<tn<t

dxt1 ⊗ . . .⊗ dxtn

∥∥∥∥M
n

≤‖PM‖.
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Image of signature

Open problem

How to characterise{
S (x)0,1 : x : [0, 1]→ Rd , continuous, BV

}
as a subset of tensor algebra?

Lemma (Chen)

Define L1 = Rd and if [a, b] = a⊗ b − b ⊗ a,

Ln+1 = span
{

[a, b] : a ∈ Rd , b ∈ Ln
}
.

Then
log S (x)0,1 ∈ Π∞n=1Ln.
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Image of signature

Lyons-Sidorova conjecture (modified)

If x has bounded variation and

log S (x)0,1 =
∞∑
n=1

ln,

where ln ∈ Ln, then ∃λ such that

∞∑
n=1

λn‖ln‖ =∞

unless x is conjugate and tree-like equivalent to a straight line.
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Image of signature

Lemma (Key Ingredient of Lyons-Sidorova)

Lyons-Sidorova conjecture is true for the path (x , y) if there
exists λ such that if

dY λ
t = λ

(
dxt dyt
dyt −dxt

)
Y λ
t , Y λ

t = I ,

then Y λ
1 /∈ exp

(
sl
(
2;R2)).
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Hambly-Lyons open problems on signatures

Problem 1.10: Uniqueness problem
Problem 1.11: Inversion problem
Problem 1.12: Image problem.


