```
Characterising
    the set of
(untruncated)
    signature
    Horatio
Boedihardjo
```


Characterising the set of (untruncated) signature

Horatio Boedihardjo

University of Warwick

July 10, 2020

The starting point...

Characterising
the set of
(untruncated)
signature
Horatio
Boedihardjo

Hambly, B. and Lyons, T., 2010. Uniqueness for the signature of a path of bounded variation and the reduced path group. Annals of Mathematics, pp.109-167.

Paths with concatenation

Characterising the set of (untruncated) signature	Definition (Paths)
Horatio	The set of paths:
Boedihardjo	$P=\left\{x:[0,1] \rightarrow \mathbb{R}^{d}: x\right.$ continuous, $\left.x(0)=0\right\}$.

Paths with concatenation

Characterising
the set of
(untruncated) signature

Horatio
Boedihardjo

Definition (Paths)

The set of paths:

$$
P=\left\{x:[0,1] \rightarrow \mathbb{R}^{d}: x \text { continuous, } x(0)=0\right\}
$$

Definition (Concatenation)

Given $x, y \in P$, define

$$
(x y)(t)= \begin{cases}x(2 t), & t \in\left[0, \frac{1}{2}\right] \\ x(1)+y(2 t-1), & t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Paths with concatenation

Characterising
the set of
(untruncated) signature

Horatio
Boedihardjo

Definition (Paths)

The set of paths:

$$
P=\left\{x:[0,1] \rightarrow \mathbb{R}^{d}: x \text { continuous, } x(0)=0\right\} .
$$

Definition (Concatenation)

Given $x, y \in P$, define

$$
(x y)(t)= \begin{cases}x(2 t), & t \in\left[0, \frac{1}{2}\right] \\ x(1)+y(2 t-1), & t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Goal:

Turn $(P$,$) into a group.$

Definition of a group

Characterising
the set of
(untruncated)
signature
Horatio
Boedihardjo

Definition

Recall $(G, *)$ is a group if

1. (Closure)

$$
x * y \in G \quad \forall x, y \in G
$$

2. (Associativity)

$$
(x * y) * z=x *(y * z), \quad \forall x, y, z \in G
$$

3. (Identity)

$$
\exists e \in G \quad x * e=e * x=x \quad \forall x \in G .
$$

4. (Inverse)

$$
\forall x \in G \quad \exists y \in G \quad x * y=e
$$

No inverse

Characterising
the set of
(untruncated)
signature
Horatio Boedihardjo

Fact

Path almost never have inverse wrt concatenation. Identity element:

$$
e(t)=0 \forall t \in[0,1]
$$

Candidate for inverse:

$$
\overleftarrow{x}(t)=x(1-t)-x(1)
$$

Then

$$
(x \overleftarrow{x})(t)= \begin{cases}x(2 t), & t \in\left[0, \frac{1}{2}\right] ; \\ x(2-2 t), & t \in\left[\frac{1}{2}, 1\right] .\end{cases}
$$

Unless $x=e$,

$$
x \overleftarrow{x} \neq e
$$

No inverse

Characterising
the set of (untruncated) signature

Need an equivalence relation \sim on P such that: 1

$$
x \overleftarrow{x} \sim \overleftarrow{x} x \sim e
$$

All of the followings are $\sim e$:

No inverse

Characterising
the set of (untruncated) signature

Need an equivalence relation \sim on P such that: 1

$$
x \overleftarrow{x} \sim \overleftarrow{x} x \sim e
$$

2

$$
x_{1} \sim x_{2}, y_{1} \sim y_{2} \Longrightarrow x_{1} y_{1} \sim x_{2} y_{2}
$$

All of the followings are $\sim e$:

Tree-like path

Characterising
the set of
(untruncated)
signature
Horatio
Boedihardjo

Definition (\mathbb{R}-tree, Favre-Jonsson04)

If τ is a partially ordered set satisfying:

1. τ has global min. (call r) and pairwise min.
2. For any $t \in \tau$, the set below is totally ordered

$$
\{s \in \tau: s \preceq t\} ;
$$

3. $\exists L: \tau \rightarrow \mathbb{R}_{\geq 0}$ map intervals in τ bijectively to intervals in \mathbb{R}.

If $d(s, t)=L(t)+L(s)-2 L(s \wedge t)$,
then (τ, d) is a \mathbb{R}-tree.
b

Tree-like path

Characterising
the set of
(untruncated)
signature
Horatio Boedihardjo

Definition (Loop in a tree)
Let τ be a \mathbb{R}-tree. A loop in τ is a continuous function $\phi:[0,1] \rightarrow \tau$ such that $\phi(0)=\phi(1)$.

Tree-like path

Characterising
the set of
(untruncated) signature

Horatio
Boedihardjo

Definition (Loop in a tree)
Let τ be a \mathbb{R}-tree. A loop in τ is a continuous function
$\phi:[0,1] \rightarrow \tau$ such that $\phi(0)=\phi(1)$.

Definition (Tree-like Hambly-Lyons10)

A path $x:[0,1] \rightarrow V$ is tree-like if there exists:

1. a loop ϕ in a \mathbb{R}-tree τ;
2. a continuous function $\psi: \tau \rightarrow V$

$$
x=\psi \circ \phi
$$

Tree-like equivalence

Characterising
the set of (untruncated) signature

Horatio Boedihardjo

Definition (Tree-like relation, Hambly-Lyons10)
We define a relation \sim on paths by $x_{1} \sim x_{2}$ if

$$
x_{1} \overleftarrow{x_{2}} \quad \text { is a tree-like path. }
$$

Tree-like equivalence

Characterising
the set of
(untruncated) signature

Horatio Boedihardjo

Definition (Tree-like relation, Hambly-Lyons10)
We define a relation \sim on paths by $x_{1} \sim x_{2}$ if

$$
x_{1} \overleftarrow{x_{2}} \quad \text { is a tree-like path. }
$$

Theorem (Hambly-Lyons10)

The relation \sim is an equivalence relation on the set of bounded variation paths.
The set

$$
R P=\left\{[x]_{\sim}: x:[0,1] \rightarrow \mathbb{R}^{d} \text { continuous, } B V, x(0)=0\right\}
$$

is called the (BV) Reduced path group.

Proof of Tree-like equivalence 1

Characterising
the set of
(untruncated)
signature
Horatio
Boedihardjo

Definition (Signature)

The signature of $x:[0,1] \rightarrow \mathbb{R}^{d}$ is defined by
$S(x)_{0,1}=1+\int_{0}^{1} \mathrm{~d} x_{t_{1}}+\ldots+\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}+\ldots$.

Proof of Tree-like equivalence 1

Characterising
the set of
(untruncated)
signature
Horatio
Boedihardjo

Definition (Signature)

The signature of $x:[0,1] \rightarrow \mathbb{R}^{d}$ is defined by

$$
S(x)_{0,1}=1+\int_{0}^{1} \mathrm{~d} x_{t_{1}}+\ldots+\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}+\ldots
$$

Theorem (Hambly-Lyons10)

If x has bounded variation (BV),

$$
S(x)_{0,1}=1 \Longleftrightarrow x \text { is tree-like. }
$$

Proof of Tree-like equivalence 1

Characterising
the set of
(untruncated) signature

Horatio
Boedihardjo

Definition (Signature)

The signature of $x:[0,1] \rightarrow \mathbb{R}^{d}$ is defined by

$$
S(x)_{0,1}=1+\int_{0}^{1} \mathrm{~d} x_{t_{1}}+\ldots+\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}+\ldots
$$

Theorem (Hambly-Lyons10)

If x has bounded variation (BV),

$$
S(x)_{0,1}=1 \Longleftrightarrow x \text { is tree-like. }
$$

Corollary

$x_{1} \sim x_{2} \Longleftrightarrow S\left(x_{1}\right)_{0,1}=S\left(x_{2}\right)_{0,1}$ for $B V$ paths.

Reduced paths

Characterising
the set of (untruncated) signature

Horatio Boedihardjo

Definition (Reduced paths)
A path $x:[0,1] \rightarrow \mathbb{R}^{d}$ is reduced if

$$
\text { length }(x)=\inf \left\{\operatorname{length}(\alpha): S(\alpha)_{0,1}=S(x)_{0,1}\right\} .
$$

Reduced paths

Characterising
the set of
(untruncated) signature

Horatio
Boedihardjo

Definition (Reduced paths)

A path $x:[0,1] \rightarrow \mathbb{R}^{d}$ is reduced if

$$
\text { length }(x)=\inf \left\{\operatorname{length}(\alpha): S(\alpha)_{0,1}=S(x)_{0,1}\right\} .
$$

Corollary (Hambly-Lyons10)

If x_{1}, x_{2} are reduced paths with bounded variation,
$S\left(x_{1}\right)_{0,1}=S\left(x_{2}\right)_{0,1} \Longleftrightarrow x_{1}=x_{2}$ up to translation, reparam.

Proof of uniqueness

Characterising
the set of
(untruncated)
signature
Horatio
Boedihardjo

Definition

Let $\operatorname{Sh}(n, k)$ be the set of bijections $\sigma:\{1, \ldots, n+k\} \rightarrow\{1, \ldots, n+k\}$ such that

$$
\begin{aligned}
& \sigma(1)<\sigma(2)<\ldots<\sigma(n) \\
& \sigma(n+1)<\ldots<\sigma(n+k) .
\end{aligned}
$$

Proof of uniqueness

Characterising
the set of
(untruncated)
signature
Horatio
Boedihardjo

Definition

Let $\operatorname{Sh}(n, k)$ be the set of bijections $\sigma:\{1, \ldots, n+k\} \rightarrow\{1, \ldots, n+k\}$ such that

$$
\begin{aligned}
& \sigma(1)<\sigma(2)<\ldots<\sigma(n) \\
& \sigma(n+1)<\ldots<\sigma(n+k) .
\end{aligned}
$$

Lemma ("Shuffle product formula")

$$
\begin{aligned}
& \text { If } x=\left(x^{1}, \ldots, x^{d}\right), \\
& \\
& =\int_{0<t_{1}<\ldots<t_{n}<t} \mathrm{~d} x_{t_{1}}^{i_{1}} \ldots \mathrm{~d} x_{t_{n}}^{i_{n}} \cdot \int_{0<t_{1}<\ldots<t_{k}<t} \int_{0<t_{1}(n, k)} \int_{0<t_{1}<\ldots<t_{n+k}<t}^{i_{n+1}} \ldots \mathrm{~d} x_{t_{k}}^{i_{n+k}} \\
& \mathrm{~d} x_{t_{1}}^{i_{\sigma}-1(1)} \ldots \mathrm{d} x_{t_{n+k}}^{i_{\sigma-1}(n+k)} .
\end{aligned}
$$

Linear functionals on signatures

Characterising
the set of (untruncated) signature

Horatio Boedihardjo

Examples

Closure under products

$$
\begin{aligned}
& \left(\int_{0<t_{1}<t_{2}<t} \mathrm{~d} x_{t_{1}}^{1} \mathrm{~d} x_{t_{2}}^{2}\right)\left(\int_{0<t_{1}<t} \mathrm{~d} x_{t_{1}}^{1}\right) \\
= & 2 \int_{0<t_{1}<t_{2}<t_{3}<t} \mathrm{~d} x_{t_{1}}^{1} \mathrm{~d} x_{t_{2}}^{1} \mathrm{~d} x_{t_{3}}^{2}+\int_{0<t_{1}<t_{2}<t_{3}<t} \mathrm{~d} x_{t_{1}}^{1} \mathrm{~d} x_{t_{2}}^{2} \mathrm{~d} x_{t_{3}}^{1} .
\end{aligned}
$$

Closure under integration

$$
\begin{aligned}
& \int_{0}^{t}\left(\int_{0<t_{1}<t_{2}<u} \mathrm{~d} x_{t_{1}}^{1} \mathrm{~d} x_{t_{2}}^{2}+\int_{0<t_{1}<u} \mathrm{~d} x_{t_{1}}^{1}\right) \mathrm{d} x_{u}^{2} \\
= & \int_{0<t_{1}<t_{2}<t_{3}<u} \mathrm{~d} x_{t_{1}}^{1} \mathrm{~d} x_{t_{2}}^{2} \mathrm{~d} x_{t_{3}}^{2}+\int_{0<t_{1}<t_{2}<u} \mathrm{~d} x_{t_{1}}^{1} \mathrm{~d} x_{t_{2}}^{2} .
\end{aligned}
$$

Proof

Characterising the set of (untruncated) signature

Horatio Boedihardjo

Lemma (B. Geng Lyons Yang 16)
If $t \rightarrow S(x)_{0, t}$ and $t \rightarrow S(y)_{0, t}$ both injective.
If x not reparametrisation of y, then
\exists smooth functions L_{1}, L_{2}

$$
\int_{0}^{1} L_{1}\left(S(x)_{0, u}\right) \mathrm{d} L_{2}\left(S(x)_{0, u}\right) \neq \int_{0}^{1} L_{1}\left(S(y)_{0, u}\right) \mathrm{d} L_{2}\left(S(y)_{0, u}\right.
$$

Proof

Characterising
the set of
(untruncated) signature

Horatio Boedihardjo

Lemma (B. Geng Lyons Yang 16)
If $t \rightarrow S(x)_{0, t}$ and $t \rightarrow S(y)_{0, t}$ both injective.
If x not reparametrisation of y, then
\exists smooth functions L_{1}, L_{2}

$$
\int_{0}^{1} L_{1}\left(S(x)_{0, u}\right) \mathrm{d} L_{2}\left(S(x)_{0, u}\right) \neq \int_{0}^{1} L_{1}\left(S(y)_{0, u}\right) \mathrm{d} L_{2}\left(S(y)_{0, u}\right.
$$

Corollary

If $t \rightarrow S(x)_{0, t}$ and $t \rightarrow S(y)_{0, t}$ injective, then

$$
S(x)_{0,1}=S(y)_{0,1} \Longleftrightarrow x \quad \text { reparametrisation of } y .
$$

Isometry

Characterising
the set of (untruncated) signature

Horatio Boedihardjo

Theorem (Hambly-Lyons isometry)
A path $x:[0,1] \rightarrow \mathbb{R}^{d}$ satisfies $\left\|x_{t}^{\prime}\right\|=1 \forall t$ and is C^{3}, then

$$
\begin{equation*}
\text { length }(x)=\limsup _{n \rightarrow \infty}\left\|n!\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}\right\|^{\frac{1}{n}} \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ is the projective norm w.r.t. Euclidean norm.

Isometry

Characterising
the set of
(untruncated)
signature
Horatio
Boedihardjo

Theorem (Hambly-Lyons isometry)
A path $x:[0,1] \rightarrow \mathbb{R}^{d}$ satisfies $\left\|x_{t}^{\prime}\right\|=1 \forall t$ and is C^{3}, then

$$
\begin{equation*}
\text { length }(x)=\limsup _{n \rightarrow \infty}\left\|n!\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}\right\|^{\frac{1}{n}} \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ is the projective norm w.r.t. Euclidean norm.

Open problem

1. Is limsup in (1) in fact a lim?
2.Extend isometry (1) to reduced bounded variation paths.

$\lim =\lim \sup$

Characterising
the set of (untruncated) signature

Horatio Boedihardjo

Theorem (B.-Geng)
If x is a non tree-like, B.V. path, then there is at most finitely many n such that

$$
\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}=0 .
$$

$\lim =\lim \sup$

Characterising
the set of
(untruncated) signature

Horatio Boedihardjo

Theorem (B.-Geng)
If x is a non tree-like, B.V. path, then there is at most finitely many n such that

$$
\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}=0
$$

Theorem (Chang-Lyons-Ni)

If x is a B.V. path, then the following limit exists:

$$
\lim _{n \rightarrow \infty}\left\|n!\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}\right\|^{\frac{1}{n}}
$$

$\lim =\lim \sup$

Characterising
the set of
(untruncated) signature

Horatio Boedihardjo

Ideas from Chang-Lyons-Ni.

$$
\begin{aligned}
& \text { If } x=\left(x^{1}, \ldots, x^{d}\right), \\
& \\
& =\int_{0<t_{1}<\ldots<t_{n}<t} \mathrm{~d} x_{t_{1}}^{i_{1}} \ldots \mathrm{~d} x_{t_{n}}^{i_{n}} \cdot \int_{0<t_{1}<\ldots<t_{k}<t} \int_{0<t_{1}(n, k)} \int_{0<t_{1}<\ldots<t_{n+k}<t}^{i_{n+1}} \ldots \mathrm{~d} x_{t_{k}}^{i_{n+k}} \\
& \mathrm{~d} x_{t_{1} i^{-1}(1)}^{i_{n}} \ldots \mathrm{~d} x_{t_{n+k}{ }^{i^{-1}(n+k)}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left|\int_{0<t_{1}<\ldots<t_{n}<t} \mathrm{~d} x_{t_{1}}^{i_{1}} \ldots \mathrm{~d} x_{t_{n}}^{i_{n}}\right| \cdot\left|\int_{0<t_{1}<\ldots<t_{k}<t} \mathrm{~d} x_{t_{1}}^{i_{n+1}} \ldots \mathrm{~d} x_{t_{k}}^{i_{n+k}}\right| \\
\leq & |S h(n, k)| \max _{\sigma \in S h(n, k)}\left|\int_{0<t_{1}<\ldots<t_{n+k}<t} \mathrm{~d} x_{t_{1}}^{i_{\sigma-1}(1)} \ldots \mathrm{d} x_{t_{n+k}}^{i_{\sigma-1}(n+k)}\right| .
\end{aligned}
$$

Proof of isometry (special case)

Characterising
the set of
(untruncated) signature

Horatio
Boedihardjo

Lemma (Hambly-Lyons10)
Let Y_{t}^{λ} be the solution to

$$
\mathrm{d} Y_{t}^{\lambda}=\lambda A\left(\mathrm{~d} x_{t}\right) Y_{t}^{\lambda}, \quad Y_{0}^{\lambda}=v
$$

with $\|v\|=1$. If $\|A\|_{\mathbb{R}^{d} \rightarrow L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}=1$, then
$\limsup _{\lambda \rightarrow \infty} \frac{\log \left\|Y_{1}^{\lambda}\right\|}{\lambda} \leq \lim _{n \rightarrow \infty}\left\|n!\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}\right\|^{\frac{1}{n}}$.

Proof of isometry (special case)

Characterising
the set of
(untruncated) signature

Horatio
Boedihardjo

Lemma (Hambly-Lyons10)

Let Y_{t}^{λ} be the solution to

$$
\mathrm{d} Y_{t}^{\lambda}=\lambda A\left(\mathrm{~d} x_{t}\right) Y_{t}^{\lambda}, \quad Y_{0}^{\lambda}=v
$$

with $\|v\|=1$. If $\|A\|_{\mathbb{R}^{d} \rightarrow L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}=1$, then
$\limsup _{\lambda \rightarrow \infty} \frac{\log \left\|Y_{1}^{\lambda}\right\|}{\lambda} \leq \lim _{n \rightarrow \infty}\left\|n!\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}\right\|^{\frac{1}{n}}$.

$$
Y_{1}^{\lambda}=v+\ldots+\lambda^{n} \int_{0<t_{1}<\ldots<t_{n}<1} A \mathrm{~d} x_{t_{1}} \ldots A \mathrm{~d} x_{t_{n}} v \ldots
$$

Isometry

Characterising
the set of
(untruncated)
signature
Horatio Boedihardjo

Theorem (Lyons-Xu16)
If $\left\|x^{\prime}\right\|=1$ and x is C^{1}, then
$\limsup _{n \rightarrow \infty}\left\|n!\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}\right\|^{\frac{1}{n}}=$ length (x).
(2)

Isometry

Characterising
the set of (untruncated) signature

Horatio Boedihardjo

Theorem (Lyons-Xu16)

If $\left\|x^{\prime}\right\|=1$ and x is C^{1}, then
$\limsup _{n \rightarrow \infty}\left\|n!\int_{0<t_{1}<\ldots<t_{n}<1} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}\right\|^{\frac{1}{n}}=$ length (x).

Theorem (B.-Geng To Appear)
If $d=2,\left\|x^{\prime}\right\|=1$ and
$\forall t \in[0,1], \exists \delta, a$, s.t $\operatorname{Arg}\left(x_{s}^{\prime}\right) \in(a, a+\pi-\varepsilon) \forall s \in(t-\delta, t+\delta)$
, then (2) holds.

Isometry (rough path case)

Characterising
the set of
(untruncated)
signature
Horatio Boedihardjo

Theorem (B.-Geng19)

If B is multi-dimensional Brownian motion, there exists deterministic $C>0$, almost surely,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\left(\frac{n}{2}\right)!\int_{0<t_{1}<\ldots<t_{n}<t} \mathrm{~d} B_{t_{1}} \otimes \ldots \otimes \mathrm{~d} B_{t_{n}}\right\|^{\frac{2}{n}}=C t . \tag{3}
\end{equation*}
$$

Isometry (rough path case)

Characterising
the set of
(untruncated) signature

Horatio Boedihardjo

Theorem (B.-Geng19)

If B is multi-dimensional Brownian motion, there exists deterministic $C>0$, almost surely,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\left(\frac{n}{2}\right)!\int_{0<t_{1}<\ldots<t_{n}<t} \mathrm{~d} B_{t_{1}} \otimes \ldots \otimes \mathrm{~d} B_{t_{n}}\right\|^{\frac{2}{n}}=C t . \tag{3}
\end{equation*}
$$

Theorem (B.-Geng-Souris20)

If $x_{t}=e^{t\left(\mathcal{P}_{1}+\ldots+\mathcal{P}_{M}\right)}$, where \mathcal{P}_{i} is Lie polynomial of degree i, there exists $C>0$ depending on M, d,

$$
\begin{aligned}
C\left\|\mathcal{P}_{M}\right\| & \leq \limsup _{n \rightarrow \infty}\left\|\left(\frac{n}{M}\right)!\int_{0<t_{1}<\ldots<t_{n}<t} \mathrm{~d} x_{t_{1}} \otimes \ldots \otimes \mathrm{~d} x_{t_{n}}\right\|^{\frac{M}{n}} \\
& \leq\left\|\mathcal{P}_{M}\right\| .
\end{aligned}
$$

Image of signature

Characterising
the set of (untruncated) signature

Horatio Boedihardjo

Open problem

How to characterise

$$
\left\{S(x)_{0,1}: x:[0,1] \rightarrow \mathbb{R}^{d}, \text { continuous, } \mathrm{BV}\right\}
$$

as a subset of tensor algebra?

Image of signature

Characterising
the set of (untruncated) signature

Horatio
Boedihardjo

Open problem

How to characterise

$$
\left\{S(x)_{0,1}: x:[0,1] \rightarrow \mathbb{R}^{d}, \text { continuous, } \mathrm{BV}\right\}
$$

as a subset of tensor algebra?

Lemma (Chen)

Define $L_{1}=\mathbb{R}^{d}$ and if $[a, b]=a \otimes b-b \otimes a$,

$$
L_{n+1}=\operatorname{span}\left\{[a, b]: a \in \mathbb{R}^{d}, b \in L_{n}\right\} .
$$

Then

$$
\log S(x)_{0,1} \in \Pi_{n=1}^{\infty} L_{n}
$$

Image of signature

Characterising
the set of
(untruncated)
signature
Horatio
Boedihardjo

Lyons-Sidorova conjecture (modified)

If x has bounded variation and

$$
\log S(x)_{0,1}=\sum_{n=1}^{\infty} I_{n}
$$

where $I_{n} \in L_{n}$, then $\exists \lambda$ such that

$$
\sum_{n=1}^{\infty} \lambda^{n}\left\|I_{n}\right\|=\infty
$$

unless x is conjugate and tree-like equivalent to a straight line.

Image of signature

Characterising
the set of (untruncated) signature

Horatio Boedihardjo

Lemma (Key Ingredient of Lyons-Sidorova)
Lyons-Sidorova conjecture is true for the path (x, y) if there exists λ such that if

$$
\mathrm{d} Y_{t}^{\lambda}=\lambda\left(\begin{array}{cc}
\mathrm{d} x_{t} & \mathrm{~d} y_{t} \\
\mathrm{~d} y_{t} & -\mathrm{d} x_{t}
\end{array}\right) Y_{t}^{\lambda}, \quad Y_{t}^{\lambda}=I
$$

then $Y_{1}^{\lambda} \notin \exp \left(s l\left(2 ; \mathbb{R}^{2}\right)\right)$.

Hambly-Lyons open problems on signatures

Characterising
the set of
(untruncated)
signature
Horatio
Boedihardjo

Problem 1.10: Uniqueness problem
Problem 1.11: Inversion problem
Problem 1.12: Image problem.

