Welcome

Hong Yan City University of Hong Kong Centre for Intelligent Multidimensional Data Analysis Limited

Group Members

People who have contributed to this work:

Lijiang Chen Long Chen **Ray Cheung Dao-Qing Dai** Xiangchao Gan Lixin Han Sheheryar Khan Lichun Ma Alan W C Liew **Benben Liu** Xinyu Liu

David Smith Peter Tino Debby Wang Doris Z Wang Wen-Hui Yang Chiwai Yu Hongya Zhao Xuefei Zhe Bin Zou

Multidimensional Big Data

 $Data[x_1][x_2]\cdots[x_N]$ $\mathcal{A} = \left(a_{i_1i_2\cdots i_N}\right) \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_N}$

Higher-order tensor Multi-way data array Multidimensional data

Example 1: Gene × Condition × Time Example 2: Document × Key word × Region Example 3: Speech × Frequency × Time

Numerical Computation and Data Analysis

Numerical Computation:

FORTRAN: 1950's, SVD: 1950's~70's LINPACK, EISPACK, MINPACK: 1970's~80's MATLAB: 1980's, R: 1990's, LAPACK: 1990's

Information Processing:

Digital signal, image and video processing

Data acquisition, storage, retrieval, transmission, security

Computational linguistics, internet search, business intelligence

Artificial Intelligence (Data Driven):

Machine learning, deep learning

Intelligent robot and autonomous vehicles

Data mining, pattern matching and decision making

Focus of This Talk: Coherent Pattern Detection

Coherent Pattern Detection:

Input: big multidimensional data Output: smaller coherent patterns

Techniques:

Matrix / tensor decomposition Low-rank matrix / tensor identification Hyperplane models for coherent pattern detection

Applications:

- Disease diagnosis based on gene expression data
- Cell division data analysis
- **Removal of irrelevant features**
- Protein secondary structure prediction
- Human facial expression analysis and classification

Stigma:

- * NP-hard
- * Inherently intractable

Machine Learning Methods

Decision region formation: Lines, curves, planes, spheres Decision trees, Random forests Linear / nonlinear / logistic regression Support vector machines Artificial neural networks

Dimensionality reduction (PCA, SVD, ...) Hidden Markov model Clustering, k-means, hierarchical, ... Graph cutting Minimum spanning trees Hough transform Self-organizing maps

Clustering and Co-clustering

Classification in one direction only

Classification in both directions

Differences between PCA and Co-clustering

$$\mathbf{x}_{1} = (\mathbf{x}_{11}, \mathbf{x}_{12}, \dots, \mathbf{x}_{1n})$$
$$\mathbf{x}_{2} = (\mathbf{x}_{21}, \mathbf{x}_{22}, \dots, \mathbf{x}_{2n})$$
$$\dots$$
$$\mathbf{x}_{m} = (\mathbf{x}_{m1}, \mathbf{x}_{m2}, \dots, \mathbf{x}_{mn})$$

Input data: m × n matrix m samples n features

PCA: compute PCs All samples and all features contribute to the PCs Co-clustering: look for subsets Some samples and some features contribute to the co-clusters

Genes and Conditions

Microarray Data Matrix

Different Types of Co-clusters

x	у	Ζ	w	
1.2	1.2	1.2	1.2	
1.2	1.2	1.2	1.2	
1.2	1.2	1.2	1.2	
1.2	1.2	1.2	1.2	

x	у	Ζ	w
1.2	1.2	1.2	1.2
2.0	2.0	2.0	2.0
1.5	1.5	1.5	1.5
3.0	3.0	3.0	3.0

x	у	Ζ	w
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0

Constant

Constant row

Constant column

X	у	Ζ	w
1.2	2.2	0.2	3.2
2.0	3.0	1.0	4.0
1.4	2.4	0.4	3.4
2.4	3.4	1.4	4.4

x	у	Ζ	w
1.0	2.0	0.5	1.5
2.0	4.0	1.0	3.0
1.4	2.8	0.7	2.1
2.4	4.8	1.2	3.6

x	у	Ζ	w
1.0	2.1	0.6	1.7
2.0	4.1	1.1	3.2
1.4	2.9	0.8	2.3
2.4	4.9	1.3	3.8

Additive

Multiplicative

Linear

Example of Existing Methods

Cheng and Church's Algorithm

$$H(I,J) = \frac{1}{|I||J|} \sum_{i \in I, j \in J} (e_{ij} - e_{iJ} - e_{Ij} + e_{IJ})^2$$

 $e_{Ij} = \frac{1}{|I|} \sum_{i \in I} e_{ij}$ Column average

I: subset of genes J: subset of conditions I X J: bicluster

Geometrical Interpretations: Our Approach

x	<i>y</i>	Ζ	W		x	y	Ζ	1
1.2	1.2	1.2	1.2		1.2	1.2	1.2	
1.2	1.2	1.2	1.2		2.0	2.0	2.0	1
1.2	1.2	1.2	1.2		1.5	1.5	1.5	
1.2	1.2	1.2	1.2		3.0	3.0	3.0	
				- 1				

x	<i>y</i>	Ζ	W	x	y	Z	W
1.2	2.0	1.5	3.0	1.2	2.2	0.2	3.2
1.2	2.0	1.5	3.0	2.0	3.0	1.0	4.0
1.2	2.0	1.5	3.0	1.4	2.4	0.4	3.4
1.2	2.0	1.5	3.0	2.4	3.4	1.4	4.4

				1				
x	<i>y</i>	Ζ	W		x	у	Ζ	ท
1.0	2.0	0.5	1.5		1.0	2.1	0.6	1
2.0	4.0	1.0	3.0		2.0	4.1	1.1	3
1.4	2.8	0.7	2.1		1.4	2.9	0.8	2
2.4	4.8	1.2	3.6		2.4	4.9	1.3	3

The Hough Transform

References: H Yan, *IEEE Trans. SMC, Part B*, 34(1):210-221, 2004; H Yan, "Curve tracing system," *United States Patent* 7263538, 2007.

Lines in the Hough Space

Similar Method: Radon Transform (projections at different angles)

Hyperplane in Object Space

$$\begin{split} F_0(j) &= \sum_{i=1}^{N-1} \beta_i F_i(j) + \beta_N & \text{Hyperplane equation} \\ F_0(j), F_1(j), \dots, F_{N-1}(j), \ (j = 1, 2, \dots, M) & \text{Condition variables} \\ \beta_1, \beta_2, \dots, \beta_N & \text{Hyperplane coefficients} \\ &\sum_{i=1}^{M-1} F_i(j) \beta_i + \beta_M - F_0(j) = 0 & 0 \le j \le M \\ &\beta_i \in [C_i - L_i, C_i + L_i] & \text{Parameter value range} \end{split}$$

Hyperplane in Parameter Space

$$\sum_{i=1}^{N-1} \frac{F_i(j)L_i}{W(j)L_N} \frac{\beta_i}{L_i} + \frac{\beta_N}{W(j)L_N} - \frac{F_0(j)}{W(j)L_N} = 0$$

Original hyperplane equation in object space

 $\frac{F_i(j)L_i}{W(j)L_N} = a_i(j)$ $X_i = \frac{\beta_i}{L_i}$ $\sum_{i=1}^N a_i^2(j) = 1$

Hyperplane coefficients

Hyperplane variables

Normalization

Only k out of M variables needed

 $\sum_{i=1}^{n} a_i(j) X_i + a_0(j) = 0$ Hyperplane equation in parameter space

References: X Gan, A Liew, and H Yan, *BMC Bioinformatics*, 9:209, 2008; X Gan, A Liew, and H Yan, "Representation and extraction of biclusters from data arrays," *US Patent* 7849088, 2010.

The Fast Hough Transform

$$a_0(j) + \sum_{i=1}^k a_i(j)C_i \le r$$

Test for hyperplane and hypercube intersection

Cancer Diagnosis based on Co-clustering

Human Lymphoma Data

Breast Cancer Data

References: X Gan, A Liew, and H Yan, *BMC Bioinformatics*, 9:209, 2008; X Gan, A Liew, and H Yan, "Representation and extraction of biclusters from data arrays," *US Patent* 7849088, 2010.

Drug Therapeutic Effect Assessment

References: H. Zhao and H. Yan, *BMC Bioinformatics*, 8:256, 2007, P. Tino, H. Zhao, and H. Yan, *IEEE Trans. Computational Biology & Bioinformatics*, 8:1093-1107, 2011.

Co-expressed Genes in Human Organs

Reference: H. Zhao, A. W. C. Liew, X. Xie, and H. Yan, *Journal of Theoretical Biology*, 251(3):264-274, 2008.

GPU Based Accelerators

Reference: B Liu, Y Xin, RCC Cheung, and H Yan, *Neurocomputing*, 134:239–246, 2014.

FPGA Based Accelerators

Complexity of HT for Many Variables

Assume: Number of variables: M Quantization level: N → Number of cells: M^N Too many for large M Solution: Take 2 columns at a time → Analysis in column-pair spaces

Analysis in Column-pair Spaces

 $(1, 2) \rightarrow$ sub-co-cluster $(1, 3) \rightarrow$ sub-co-cluster

 $(2, 3) \rightarrow$ sub-co-cluster $(2, 4) \rightarrow$ sub-co-cluster

 $(3, 4) \rightarrow$ sub-co-cluster $(3, 5) \rightarrow$ sub-co-cluster Merge sub-co-clusters Form larger ones

Limitations of Column-Pair Approach

Procedure:

Consider each column pair Detect sub-co-clusters (with 2 columns and many rows) Merge sub-co-clusters

Limitations:

Tow many column pairs for higher dimensional data Noise causes too many small sub-co-clusters Results depend on order of the merging process

Solution:

Perform analysis in singular vector spaces

Co-clusters as Low-Rank Matrices

x	у	Z	w
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2

x	у	Ζ	w
1.2	1.2	1.2	1.2
2.0	2.0	2.0	2.0
1.5	1.5	1.5	1.5
3.0	3.0	3.0	3.0

x	у	Ζ	w
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0

Constant Rank = 1

Constant row Rank = 1

Constant column

Rank = 1

Х	t y z		w	
1.2	2.2	0.2	3.2	
2.0	3.0	1.0	4.0	
1.4	2.4	0.4	3.4	
2.4	3.4	1.4	4.4	

x	у	Ζ	w
1.0	2.0	0.5	1.5
2.0	4.0	1.0	3.0
1.4	2.8	0.7	2.1
2.4	4.8	1.2	3.6

x	у	Ζ	w	
1.0	2.1	0.6	1.7	
2.0	4.1	1.1	3.2	
1.4	2.9	0.8	2.3	
2.4	4.9	1.3	3.8	

Additive Rank = 2 Multiplicative Rank = 1 Linear Rank = 2

Coherent pattern \rightarrow Low rank matrix

Rank at most 2

Detection of Low-Rank Sub-matrices

***** XAAXXXAXXX XAXXAXXX XAXXXAXXA XXXXXXXXX XAXAXXAXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX XAXXXAXXA XAAXXXAXXX XAXXAXXX XAXXXAXXA ***** XXXXXXXXX XBXBXXBXXX XXBXBBXXXX XAAXXXAXXX XXXXXXXXX XXBXBBXXXX XXXXXXXXX XBXBXXBXXX XXXXXXXXX XXXXXXXXX XBXBXXBXXX XXBXBBXXXX

Find locations of relevant elements Together they form a low rank matrix

Decomposition of a 2D Co-cluster

$$\begin{split} \mathbf{A}_{c} &= \mathbf{U}_{c} \boldsymbol{\Sigma}_{c} \mathbf{V}_{c}^{T} \\ &= \left[\mathbf{u}_{1}^{c} \quad \mathbf{u}_{2}^{c}\right] \begin{bmatrix} \sigma_{1}^{c} & 0 \\ 0 & \sigma_{2}^{c} \end{bmatrix} \begin{bmatrix} \left(\mathbf{v}_{1}^{c}\right)^{T} \\ \left(\mathbf{v}_{2}^{c}\right)^{T} \end{bmatrix} & \underset{Plos ONE, 11(9): e0162293: 1-27, 2016. \\ &= \left[\mathbf{u}_{1}^{c} \quad \mathbf{u}_{2}^{c}\right] \begin{bmatrix} \sigma_{1}^{c} & 0 \\ 0 & \sigma_{2}^{c} \end{bmatrix} \begin{bmatrix} v_{11}^{c} \quad v_{12}^{c} & \cdots & v_{1d}^{c} \\ v_{21}^{c} \quad v_{22}^{c} & \cdots & v_{2d}^{c} \end{bmatrix} \\ &= \left[\sigma_{1}^{c} v_{11}^{c} \mathbf{u}_{1}^{c} + \sigma_{2}^{c} v_{21}^{c} \mathbf{u}_{2}^{c} & \sigma_{1}^{c} v_{12}^{c} \mathbf{u}_{1}^{c} + \sigma_{2}^{c} v_{22}^{c} \mathbf{u}_{2}^{c} & \cdots & \sigma_{1}^{c} v_{1d}^{c} \mathbf{u}_{1}^{c} + \sigma_{2}^{c} v_{2d}^{c} \mathbf{u}_{2}^{c} \right] \\ &= \left[\sigma_{1}^{c} v_{11}^{c} \mathbf{u}_{1}^{c} + \sigma_{2}^{c} v_{21}^{c} \mathbf{u}_{2}^{c} & \sigma_{1}^{c} v_{12}^{c} \mathbf{u}_{1}^{c} + \sigma_{2}^{c} v_{22}^{c} \mathbf{u}_{2}^{c} & \cdots & \sigma_{1}^{c} v_{1d}^{c} \mathbf{u}_{1}^{c} + \sigma_{2}^{c} v_{2d}^{c} \mathbf{u}_{2}^{c} \right] \\ &= \left[\sigma_{1}^{c} v_{11}^{c} \mathbf{u}_{1}^{c} + \sigma_{2}^{c} v_{21}^{c} \mathbf{u}_{1}^{c} + \sigma_{2}^{c} v_{22}^{c} \mathbf{u}_{2}^{c} & \cdots & \sigma_{1}^{c} v_{1d}^{c} \mathbf{u}_{1}^{c} + \sigma_{2}^{c} v_{2d}^{c} \mathbf{u}_{2}^{c} \right] \\ &= \left[\sigma_{1}^{c} u_{11}^{c} \mathbf{u}_{1}^{c} + \sigma_{12}^{c} \mathbf{u}_{2}^{c} & \sigma_{1}^{c} v_{12}^{c} \mathbf{u}_{1}^{c} + \sigma_{2}^{c} v_{22}^{c} \mathbf{u}_{2}^{c} & \cdots & \sigma_{1}^{c} v_{1d}^{c} \mathbf{u}_{1}^{c} + \sigma_{2}^{c} v_{2d}^{c} \mathbf{u}_{2}^{c} \right] \\ &= \left[\sigma_{1}^{c} u_{11}^{c} \mathbf{u}_{1}^{c} + \sigma_{12} u_{2}^{c} & a_{12}^{c} \\ & \alpha_{j1} u_{21}^{c} + \alpha_{j2} u_{22}^{c} & a_{2j}^{c} \\ & \vdots \\ & \alpha_{j1} u_{21}^{c} + \alpha_{j2} u_{22}^{c} & a_{2j}^{c} \\ & \vdots \\ & \alpha_{j1} u_{21}^{c} + \alpha_{j2} u_{32}^{c} & a_{2j}^{c} \\ & \vdots \\ & \alpha_{j1} u_{21}^{c} + \alpha_{j2} u_{32}^{c} & a_{2j}^{c} \\ & \vdots \\ & \alpha_{j1} v_{21}^{c} + \alpha_{j2} u_{32}^{c} & a_{3j}^{c} \\ & \vdots \\ & \alpha_{j1} v_{21}^{c} + \alpha_{j2} u_{32}^{c} & a_{3j}^{c} \\ & \vdots \\ & \beta_{i1} v_{i1}^{c} + \beta_{i2} v_{i2}^{c} & a_{it}^{c} \\ & \vdots \\ & \beta_{i1} v_{i1}^{c} + \beta_{i2} v_{i2}^{c} & a_{it}^{c} \\ & \vdots \\ & \beta_{i1} v_{i1}^{c} + \beta_{i2} v_{i2}^{c} & a_{it}^{c} \\ & \vdots \\ & \beta_{i1}^{c} v_{i1}^{c} + \beta_{i2} v_{i2}^{c} & a_{it}^{c} \\ & \vdots \\ & \beta_{i1}^{c} v_{i1}^{c} + \beta_{i2} v_{i2}^{c} & a_{it}^{c} \\ & \vdots \\ & \beta_{i1}^{c} v_{i1}^{c} + \beta_{i2} v_{i2}^{c} & a_{it}^{c} \\$$

Decomposition of a 3D Co-cluster

$$\mathbf{A}_{(n)} = \mathbf{U}^{(n)} \boldsymbol{\Sigma}^{(n)} (\mathbf{V}^{(n)})^{T}, \ n = 1, \dots, N$$

Hyperplane Structure

- □ If **C** is a coherent matrix, then $rank(C) \le 2$.
- □ If a coherent pattern $A_c = U_c \Lambda_c V_c^T$, then the column vectors of U_c and V_c are linearly dependent, i.e.

$$\begin{cases} k_{1u} \boldsymbol{u}_{1c} + k_{2u} \boldsymbol{u}_{2c} + b_u \boldsymbol{1} = 0 \\ k_{1v} \boldsymbol{v}_{1c} + k_{2v} \boldsymbol{v}_{2c} + b_v \boldsymbol{1} = 0 \end{cases}$$

□ If a coherent pattern $\mathcal{A}_c = \mathcal{T}_c \times_1 \mathcal{U}_{1c} \times_2 \mathcal{U}_{2c} \cdots \times_N \mathcal{U}_{Nc}$, then the column vectors of \mathcal{U}_{ic} are linearly dependent, i.e.

$$\begin{cases} k_{11}\boldsymbol{u}_{1c}^{1} + k_{12}\boldsymbol{u}_{1c}^{2} + \cdots + k_{1r_{1}}\boldsymbol{u}_{1c}^{r_{1}} + b_{1}\boldsymbol{1} = 0 \\ \vdots \\ k_{N1}\boldsymbol{u}_{Nc}^{1} + k_{N2}\boldsymbol{u}_{Nc}^{2} + \cdots + k_{Nr_{N}}\boldsymbol{u}_{1c}^{r_{N}} + b_{N}\boldsymbol{1} = 0 \end{cases}$$

Co-cluster Scoring Function

2D Data

$$S(\mathbf{I}, \mathbf{J}) = \min_{i \in \mathbf{I}, j \in \mathbf{J}} \left(S_{\mathbf{I}j}, S_{i\mathbf{J}} \right) = \min_{i \in \mathbf{I}, j \in \mathbf{J}} \left[1 - \frac{1}{|\mathbf{J}| - 1} \sum_{q \neq j, q \in \mathbf{J}} \rho\left(\mathbf{a}_{\mathbf{I}j}, \mathbf{a}_{\mathbf{I}q}\right), 1 - \frac{1}{|\mathbf{I}| - 1} \sum_{q \neq i, q \in \mathbf{I}} \rho\left(\mathbf{a}_{i\mathbf{J}}, \mathbf{a}_{q\mathbf{J}}\right) \right]$$

N-D Data

$$S(\mathbf{I}^{(1)}, \mathbf{I}^{(2)}, \cdots, \mathbf{I}^{(N)}) = \min_{i_1 \in \mathbf{I}^{(1)}, i_2 \in \mathbf{I}^{(2)}, \cdots, i_N \in \mathbf{I}^{(N)}} \left(S_{i_1 \mathbf{I}^{(2)} \cdots \mathbf{I}^{(N)}}, S_{\mathbf{I}^{(1)} i_2 \mathbf{I}^{(3)} \cdots \mathbf{I}^{(N)}}, \cdots S_{\mathbf{I}^{(1)} \mathbf{I}^{(2)} \cdots i_N} \right)$$

Pair row and column indices Check coherence and filter out noisy patterns

2D Co-clusters in Singular Vector Spaces

3D Co-clusters in Singular Vector Spaces

34

Detection of Hyperplanes

Detect linear patterns in data sets

- Scaling of the variable
- Generation of the starting hyperplanes
- Initialization of the groups
- Iterative refinement
- Resampling

Scale the variables for $i = 1, \dots, d$,

$$\widetilde{y}_i = \frac{y_i}{s_i}$$
 $(i = 1, \cdots, d), s_i = \sqrt{\frac{1}{n-1}(y_i - \overline{y}_i)^T(y_i - \overline{y}_i)}$

Randomly select **K** random sub-samples of size $d, G^0 = \{g_1^0, \dots, g_K^0\}$

Iterative procedure

End

Initializing K hyperplanes $h_k^j(\widehat{\alpha}_k, \widehat{\beta}_k) = \{\widetilde{x} | \alpha_k^T \widetilde{x} = \beta_k, \widetilde{x} \in g_k^j, ||\alpha_k|| = 1\} (k = 1, \dots, K)$ Compute $d_{ik}^j = distance(\widetilde{x}_i, h_k^j) = |\widehat{\alpha}_k^T \widetilde{x}_i - \widehat{\beta}_k|$ Forming K groups for n samples such that $\widetilde{x}_i \in g_k^{j+1}$ if $k = argmin_k(d_{ik}^j)$ Computing the cost function $D^j = \sum_{k=1}^K \sum_{\widetilde{x}_i \in g_k^{j+1}} d_{ik}^j$

Reference:

H. Zhao, D. D. Wang, L. Chen, X. Liu, and H. Yan, *PLoS ONE*, 11(9): e0162293:1-27, 2016.

Coherent Pattern Detection Algorithm

Reference: H. Zhao, D. D. Wang, L. Chen, X. Liu, and H. Yan, *PLoS ONE*, 11(9): e0162293:1-27, 2016.

Experiments on Simulated Triclusters

Comparison with Other Methods

Matrix size: 500 x 200, Bicluster size: 50 x 50

Example of 3D Data

A higher-order time series dataset about genomic expression of multiple sclerosis patients after IFN-b injection treatment.

- > Patient: Twelve patients
- Time: EDTA blood samples from patients before baseline as well as 2 days, 1 month, 1 year, and 2 years after the initiation of IFN-beta therapy.
- Gene: 56 significant genes involved in IFNrelated pathways

2D Slices of Sclerosis Data

40

Analysis of Sclerosis Data

Example of Co-cluster in Sclerosis Data

GO & Pathway Analysis of Sclerosis Data

13 genes: CXCL10, EIF2AK2, IFIT1, IRF7, IRF9, ISG15, ISG20, MX1, NFKB1, OAS1, RSAD2, STAT1, TLR8;

6 patients: with the common clinical features such as the shorter disease duration, the lower EDSS scores, and relapses prior to 1 year;

2 time points: baseline and 1 year

				Pathway	_
	Table 1 Biological process of 13 ar	nnotated genes	in <i>CP</i> ₁₂₁ .	annotated	Term
GO term	Description	P-value	Enrichment	BIOCARTA	Bone remodell
GO: 0002252	immune effector process	8.81E-5	2.07 (56,25,13,12)	BIOCARTA	IFN alpha sign
GO: 0051607	defense response to virus	1.17E-4	2.26 (56,21,13,11)	BIOCARTA	Double strande gene expression
GO: 0045069	regulation of viral genome replication	2.12E-4	3.35 (56,9,13,7)	BIOCARTA	Inactivation of causes accum
GO: 0045071	negative regulation of viral genome replication	2.12E-4	3.35 (56,9,13,7)	BIOCARTA	in alveolar mae Toll-like Recep
GO: 0009615	response to virus	2.77E-4	1.91 (56,27,13,12)	KEGG_PATHWAY	Toll-like recept pathway
GO: 0050792	regulation of viral process	6.28E-4	3.02 (56,10,13,7)	KEGG_PATHWAY	RIG-I-like rece pathway
GO:	negative regulation of	6.28E-4	3.02 (56.10.13.7)	KEGG_PATHWAY	Cytosolic DNA
0048525	viral process			KEGG_PATHWAY	Chemokine sig

Idy	ie z Genomic patriway of 15 annotateu gen	r_{121}	
Pathway annotated	Term	P-value	Adjusted P-value
BIOCARTA	Bone remodelling	2.3E-4	1.0E-2
BIOCARTA	IFN alpha signaling pathway	1.9E-2	3.5E-1
BIOCARTA	Double stranded RNA induced gene expression	1.9E-2	3.5E-1
BIOCARTA	Inactivation of Gsk3 by AKT causes accumulation of b-catenin in alveolar macrophages	5.9E-2	6.0E-1
BIOCARTA	Toll-like Receptor Pathway	7.5E-2	5.9E-1
KEGG_PATHWAY	Toll-like receptor signaling pathway	2.1E-6	4.3E-5
KEGG_PATHWAY	RIG-I-like receptor signaling pathway	5.1E-5	5.1E-4
KEGG_PATHWAY	Cytosolic DNA-sensing pathway	1.7E-3	1.1E-2
KEGG_PATHWAY	Chemokine signaling pathway	1.8E-2	8.8E-2
KEGG_PATHWAY	Pancreatic cancer	8.2E-2	2.9E-1

C. Elegans Life Cycle

Picture from

www.wormatlas.org/ver1/handbook/anatomyintro /anatomyintro.htm Picture from http://www.mun.ca/biology/scarr/4241_Devo_ Caenorhabditis%20elegans%20devo.jpg

C. Elegans Cell Division

Analysis of image/video (Tera bytes of data)

Images to lineage tree

References:

L Chen, LLH Chan, Z Zhao, H Yan, *BMC Bioinformatics*, 14:328, 2013. J Cao, MK Wong, Z Zhao, and H Yan, *BMC Bioinformatics*, 20:176, 2019.

Cell Matching and Matching

References: L Chen, Z Zhao, and H Yan, *IEEE J. Selected Topics in Signal Processing*, 10(1):185-192, 2016. L Chen, Z Zhao, and H Yan, "Method for tracking an object in an image sequence," *United States Patent* 10,255,692, 2019.

C. Elegans Cell Division Lineage Tree

Tensor data: 1219 genes, 8 founder cells (AB branches), 14 descendants

References:

XT Huang, L Chen, H Chim, L Chan, Z Zhao, and H Yan, *BioMedical Engineering OnLine*, 12 (Suppl 1):S1, 2013.

VW S Ho, MK Wong, X An1, D Guan, J Shao, HCK Ng, X Ren, K He, J Liao, Y Ang, L Chen, X Huang, B Yan, Y Xia, LLH Chan, KL Chow, H Yan, and Z Zhao, *Molecular Systems Biology*,11:814, 2015.

XT Huang, Y Zhu, LLH Chan, Z Zhao, and H Yan, *Molecular BioSystems*, 12:85-92, 2016.

J Cao, G Guan, VWS Ho, MK Wong, LY Chan, C Tang, ZY Zhao, and H Yan, *Nature Communications*, 11:6254:1-14, 2020.

Analysis of C. Elegans Data

Example of Co-cluster in C. Elegans Data

Feature Modes in C. Elegans Data

Table 3 The linear groups of the feature modes in the tensor data

Features modes	The corresponding linear groups in tensor data				
	G1	The number of genes in the group is 42.			
Mode 1:	G2	The number of genes in the group is 729.			
Perturbed genes	G3 The number of genes in the group is 379.				
	G4	The number of genes in the group is 69.			
Mode 2:	G1	"*a" "*aa" "*aaa" "*ap" "*p" "*pa" "*pap" "*pp"			
descendant cells	G2	"*aap" "*apa" "*app" "*paa" "*ppa" "*ppp"			
Mode 3.	G1	"ABala" "ABalp" "ABpla" "ABplp" Terminal cells			
founder cells	G2	"ABara" "ABarp" "ABpra" "ABprp"			

GO / Pathway Analysis of C. Elegans Data

Table 4 The functional categories annotated by 42 genes in minimum δ =0.0702 in CP_{122}						
Functional categories	Term	P-value	adjusted p-value			
GO:0009792	Embryonic development ending in birth or egg hatching	8.0E-4	1.1E-1			
GO:0006260	DNA replication	4.1E-3	2.6E-1			
GO:0006259	DNA metabolic process	4.4E-2	8.9E-1			
KEGG_PATHWAY	Mismatch repair	2.3E-2	3.2E-1			
KEGG_PATHWAY	DNA replication	4.4E-2	3.0E-1			

42 genes, 6 terminal cells and 4 daughter cells of ABar and ABpr

Protein Torsion Angles

Figure 2.26 Biochemistry, Seventh Edition © 2012 W. H. Freeman and Company

Protein Structure

Reference: https://en.wikipedia.org/wiki/Protein_structure

Protein 3D structure prediction: "Holy Grail" problem Related problems: Protein / DNA / RNA / ligand interactions

Alpha-Helix and Beta-Sheet

Reference: http://book.bionumbers.org/what-is-the-energy-of-a-hydrogen-bond/

Protein Secondary Structure Prediction

 > 5000 features: amino acids, neighbours, hydrogen bonds
 15,310 α-helices, 20,847 β-strands
 Co-clustering for feature selection
 Selected features used for classification

Test	Three largest co-clusters (Row x Column)	Testing accuracy (1 co-cluster)	Testing accuracy (1 co-cluster)Testing accuracy (2 co-clusters)	
1	4284 x 10, 1696 x 9, 1800 x 7	0.8426	0.9630	0.9868
2	<mark>4270 x 10, 1706</mark> x 9, 1379 x 8	0.8645	0.9706	1.0000
3	<mark>4314 x 10, 2214</mark> x 8, 1358 x 8	0.8587	0.9447	0.9664
4	<mark>4314 x 10, 1772 x</mark> 9, 1638 x 8	0.8643	0.9640	0.9900
5	<mark>4420 x 10, 1733 x</mark> 9, 1454 x 8	0.8600	0.9633	0.9630

Reference: L Ma, DD Wang, X Liu, B Zou, and H Yan, *Current Bioinformatics*, 12(3):213-224, 2017.

Human Facial Expressions

Happier

X

Expression

y

Even higher dimensionality Picture x Expression x Person x Age Picture x Expression x Directional wavelets

Gabor Wavelet Features

$$G_{\vec{k}}(\vec{r}\,) = G_{\vec{k},+}(\vec{r}\,) + iG_{\vec{k},-}(\vec{r}\,)$$

$$G_{\vec{k},+}(\vec{r}\,) = \frac{k^2}{\delta^2} \exp\left(\frac{k^2 ||r - r_o||^2}{-2\delta^2}\right) \cos[\vec{k}(\vec{r} - \vec{r_o}\,)]$$

$$G_{\vec{k},-}(\vec{r}\,) = \frac{k^2}{\delta^2} \exp\left(\frac{k^2 ||r - r_o||^2}{-2\delta^2}\right) \sin[\vec{k}(\vec{r} - \vec{r_o}\,)]$$

- 10	111	"	1		111		
-	///	///	-		#		
101	///	///	-	-	#		<i>\\\\</i>
100	()))	///	1	=	-	#	()))
m	(1)	11	1	Ξ		-	=

Reference: A Amin, H Yan, *Int'l J. Pattern Recognition and Artificial Intelligence*, 23(3): 401–431, 2009.

Feature Selection based on Co-clustering

537 samples, 19200 features Co-clustering for feature selection Selected features used for classification

All 19200 features used→3891 (20%) features retained→191 (0.9%) features retained→

89.23%

96.14%

90.23%

Reference: S Khan, L Chen, and H Yan, IEEE T Affective Computing, 11(2):348-360, 2020.

Summary

- Coherent patterns may exist in multidimensional data
- Coherent patterns can be represented as low-rank matrices or tensors
- Coherent patterns can be detected in singular vector spaces
- Coherent patterns correspond to natural groups in multidimensional data
- Co-clustering can be used to analyze other "big data"

End of Presentation

E-mail: h.yan@cityu.edu.hk Websites: http://www.ee.cityu.edu.hk/~hpyan https://www.innocimda.com

