Welcome

City University of Hong Kong
Centre for Intelligent Multidimensional Data Analysis Limited

Group Members

People who have contributed to this work:

Lijiang Chen
Long Chen
Ray Cheung
Dao-Qing Dai
Xiangchao Gan
Lixin Han
Sheheryar Khan
Lichun Ma
Alan W C Liew
Benben Liu
Xinyu Liu

David Smith
Peter Tino
Debby Wang
Doris Z Wang
Wen-Hui Yang
Chiwai Yu
Hongya Zhao
Xuefei Zhe
Bin Zou

Multidimensional Big Data

$\operatorname{Data}\left[x_{1}\right]\left[x_{2}\right] \cdots\left[x_{N}\right]$
$\mathcal{A}=\left(a_{i_{1} i_{2} \cdots i_{N}}\right) \in \mathbb{R}^{m_{1} \times m_{2} \times \cdots \times m_{N}}$

Higher-order tensor
Multi-way data array
Multidimensional data

Example 1: Gene \times Condition \times Time
Example 2: Document \times Key word \times Region
Example 3: Speech \times Frequency \times Time

Reference: https://www.statista.com/statistics/871513/worldwide-data-created/

Number \rightarrow Vector
\longrightarrow Matrix

$$
\xrightarrow{? ? ?} \text { Tensor }
$$

Numerical Computation and Data Analysis

Numerical Computation:
FORTRAN: 1950's, SVD: 1950's~70's
LINPACK, EISPACK, MINPACK: 1970's~80's
MATLAB: 1980's, R: 1990's, LAPACK: 1990's
Information Processing:
Digital signal, image and video processing
Data acquisition, storage, retrieval, transmission, security
Computational linguistics, internet search, business intelligence
Artificial Intelligence (Data Driven):
Machine learning, deep learning

Intelligent robot and autonomous vehicles
Data mining, pattern matching and decision making

Focus of This Talk: Coherent Pattern Detection

Coherent Pattern Detection:

Input: big multidimensional data
Output: smaller coherent patterns
Techniques:
Matrix I tensor decomposition
Low-rank matrix / tensor identification
Hyperplane models for coherent pattern detection
Applications:
Disease diagnosis based on gene expression data
Cell division data analysis
Stigma:

Removal of irrelevant features
Protein secondary structure prediction
Human facial expression analysis and classification

* NP-hard
* Inherently intractable

Machine Learning Methods

Clustering and Co-clustering

Classification in one direction only

Classification in both directions

Differences between PCA and Co-clustering

$$
\begin{aligned}
& x_{1}=\left(x_{11}, x_{12}, \ldots, x_{1 n}\right) \\
& x_{2}=\left(x_{21}, x_{22}, \ldots, x_{2 n}\right) \\
& \ldots \ldots \\
& x_{m}=\left(x_{m 1}, x_{m 2}, \ldots, x_{m n}\right)
\end{aligned}
$$

Input data:

$\mathrm{m} \times \mathrm{n}$ matrix
m samples
n features

PCA: compute PCs
All samples and all features contribute to the PCs

Co-clustering: look for subsets
Some samples and some features contribute to the co-clusters

Genes and Conditions

Microarray Data Matrix

M Genes

$$
x_{i j}=\log \frac{\bar{R}_{i j}^{\text {fearure }}-\bar{R}_{i j}^{\text {background }}}{\bar{G}_{i j}^{\text {fearure }}-\bar{G}_{i j}^{\text {background }}}
$$

Different Types of Co-clusters

x	y	z	w
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2

Constant

x	y	z	w
1.2	1.2	1.2	1.2
2.0	2.0	2.0	2.0
1.5	1.5	1.5	1.5
3.0	3.0	3.0	3.0

x	y	z	w
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0

Constant row
Constant column

X	y	z	w
1.2	2.2	0.2	3.2
2.0	3.0	1.0	4.0
1.4	2.4	0.4	3.4
2.4	3.4	1.4	4.4

Additive

x	y	z	w
1.0	2.0	0.5	1.5
2.0	4.0	1.0	3.0
1.4	2.8	0.7	2.1
2.4	4.8	1.2	3.6

Multiplicative

x	y	z	w
1.0	2.1	0.6	1.7
2.0	4.1	1.1	3.2
1.4	2.9	0.8	2.3
2.4	4.9	1.3	3.8
Linear			

Example of Existing Methods

Cheng and Church's Algorithm

$$
\begin{aligned}
& H(I, J)=\frac{1}{|I||J|} \sum_{i \in I, j \in J}\left(e_{i j}-e_{i J}-e_{I j}+e_{I J}\right)^{2} \\
& e_{I j}=\frac{1}{|I|} \sum_{i \in I} e_{i j} \quad \text { Column average } \quad \begin{array}{l}
\text { I: subse } \\
\text { J: subse } \\
I \times J: ~ b i c
\end{array} \\
& e_{i J}=\frac{1}{|J|} \sum_{j \in J} e_{i j} \quad \text { Row average } \\
& e_{I J}=\frac{1}{|I||J|} \sum_{i \in I, j \in J} e_{i j}, e_{i j} \quad \text { Pattern average }
\end{aligned}
$$

Geometrical Interpretations: Our Approach

x	y	z	w
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2

x	y	z	w
1.2	1.2	1.2	1.2
2.0	2.0	2.0	2.0
1.5	1.5	1.5	1.5
3.0	3.0	3.0	3.0

(a)

\bar{x}	y	z	w
1.2	2.2	0.2	3.2
2.0	3.0	1.0	4.0
1.4	2.4	0.4	3.4
2.4	3.4	1.4	4.4

(d)

(b)

(c)

(f)
$z=a x+b$

The Hough Transform

References: H Yan, IEEE Trans. SMC, Part B, 34(1):210-221, 2004; H Yan, "Curve tracing system," United States Patent 7263538, 2007

Lines in the Hough Space

$y=a x+b$

Data space

Hough space

Quantized parameters (Voting ballot counting)

Similar Method: Radon Transform (projections at different angles)

Hyperplane in Object Space

$$
F_{0}(j)=\sum_{i=1}^{N-1} \beta_{i} F_{i}(j)+\beta_{N} \quad \text { Hyperplane equation }
$$

$F_{0}(j), F_{1}(j), \ldots, F_{N-1}(j),(j=1,2, \ldots, M) \quad$ Condition variables
$\beta_{1}, \beta_{2}, \ldots, \beta_{N} \quad$ Hyperplane coefficients
$\sum_{i=1}^{M-1} F_{i}(j) \beta_{i}+\beta_{M}-F_{0}(j)=0 \quad 0 \leq j \leq M$
$\beta_{i} \in\left[C_{i}-L_{i}, C_{i}+L_{i}\right] \quad$ Parameter value range

Hyperplane in Parameter Space

$$
\sum_{i=1}^{N-1} \frac{F_{i}(j) L_{i}}{W(j) L_{N}} \frac{\beta_{i}}{L_{i}}+\frac{\beta_{N}}{W(j) L_{N}}-\frac{F_{0}(j)}{W(j) L_{N}}=0
$$

Original hyperplane equation in object space
$\frac{F_{i}(j) L_{i}}{W(j) L_{N}}=a_{i}(j) \quad$ Hyperplane coefficients
$X_{i}=\frac{\beta_{i}}{L_{i}} \quad$ Hyperplane variables
$\sum_{i=1}^{N} a_{i}^{2}(j)=1 \quad$ Normalization
Only k out of M variables needed
$\sum_{i=1}^{k} a_{i}(j) X_{i}+a_{0}(j)=0 \quad$ Hyperplane equation in parameter space

The Fast Hough Transform

$(11,00)$	$(11,01)$	
$(10,00)$	$(10,01)$	
$(1,0)$		$(1,1)$
$(0,0)$	$(0,1)$	

k-tree representation

Developed by:
Li, Levin and Le Master
$a_{0}(j)+\sum_{i=1}^{k} a_{i}(j) C_{i} \leq r \quad$ Test for hyperplane and hypercube intersection

Cancer Diagnosis based on Co-clustering

Human Lymphoma Data

References:
X Gan, A Liew, and H Yan,
BMC Bioinformatics, 9:209, 2008;
X Gan, A Liew, and H Yan,
"Representation and extraction
of biclusters from data arrays,"
US Patent 7849088, 2010.

Drug Therapeutic Effect Assessment

References: H. Zhao and H. Yan, BMC Bioinformatics, 8:256, 2007,
P. Tino, H. Zhao, and H. Yan, IEEE Trans. Computational Biology \& Bioinformatics, 8:1093-1107, 2011.

Co-expressed Genes in Human Organs

GPU Based Accelerators

Reference: B Liu, Y Xin, RCC Cheung, and H Yan, Neurocomputing, 134:239-246, 2014.

FPGA Based Accelerators

Processing Element (PE)

FPGA Architecture

[^0]

Host PC (Data transfer through ethernet)

Complexity of HT for Many Variables

Assume:
Number of variables: M
Quantization level: N
\rightarrow Number of cells: $M^{N} \quad$ Too many for large $M!$
Solution:
Take 2 columns at a time
\rightarrow Analysis in column-pair spaces

Analysis in Column-pair Spaces

$(1,2) \rightarrow$ sub-co-cluster
$(1,3) \rightarrow$ sub-co-cluster
$(2,3) \rightarrow$ sub-co-cluster
$(2,4) \rightarrow$ sub-co-cluster
$(3,4) \rightarrow$ sub-co-cluster
$(3,5) \rightarrow$ sub-co-cluster
... \cdot.
Merge sub-co-clusters
Form larger ones

Limitations of Column-Pair Approach

Procedure:
Consider each column pair
Detect sub-co-clusters (with 2 columns and many rows)
Merge sub-co-clusters

Limitations:
Tow many column pairs for higher dimensional data
Noise causes too many small sub-co-clusters
Results depend on order of the merging process

Solution:
Perform analysis in singular vector spaces

Co-clusters as Low-Rank Matrices

x	y	z	w
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2
1.2	1.2	1.2	1.2

Constant
Rank $=1$

X	y	z	w
1.2	2.2	0.2	3.2
2.0	3.0	1.0	4.0
1.4	2.4	0.4	3.4
2.4	3.4	1.4	4.4

Additive
Rank $=2$

x	y	z	w
1.2	1.2	1.2	1.2
2.0	2.0	2.0	2.0
1.5	1.5	1.5	1.5
3.0	3.0	3.0	3.0

Constant row
Rank = 1

x	y	z	w
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0
1.2	2.0	1.5	3.0

Constant column
Rank = 1

x	y	z	w
1.0	2.0	0.5	1.5
2.0	4.0	1.0	3.0
1.4	2.8	0.7	2.1
2.4	4.8	1.2	3.6

Multiplicative
Rank $=1$

x	y	z	w
1.0	2.1	0.6	1.7
2.0	4.1	1.1	3.2
1.4	2.9	0.8	2.3
2.4	4.9	1.3	3.8

Linear
Rank $=2$

Coherent pattern \rightarrow Low rank matrix
Rank at most 2

Detection of Low-Rank Sub-matrices

xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx
XAAXXXAXXX XAXAXXAXXX XAXXXAXXXA
XXXXXXXXXX XAXAXXAXXX XXXXXXXXXX
XXXXXXXXXX XXXXXXXXXX XAXXXAXXXA
XAAXXXAXXX XAXAXXAXXX XAXXXAXXXA
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
XXXXXXXXXX XBXBXXBXXX XXBXBBXXXX
XAAXXXAXXX XXXXXXXXXX XXBXBBXXXX
XXXXXXXXXX XBXBXXBXXX XXXXXXXXXX
XXXXXXXXXX XBXBXXBXXX XXBXBBXXXX

Find locations of relevant elements
Together they form a low rank matrix

Decomposition of a 2D Co-cluster

$$
\begin{aligned}
& \mathbf{A}_{c}=\mathbf{U}_{c} \Sigma_{c} \mathbf{V}_{c}^{T} \\
& =\left[\begin{array}{ll}
\mathbf{u}_{1}^{c} & \mathbf{u}_{2}^{c}
\end{array}\right]\left[\begin{array}{ll}
\sigma_{1}^{c} & 0 \\
0 & \sigma_{2}^{c}
\end{array}\right]\left[\begin{array}{l}
\left(\mathbf{v}_{1}^{c}\right)^{T} \\
\left(\mathbf{v}_{2}^{c}\right)^{T}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\mathbf{u}_{1}^{c} & \mathbf{u}_{2}^{c}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1}^{c} & 0 \\
0 & \sigma_{2}^{c}
\end{array}\right]\left[\begin{array}{llll}
v_{11}^{c} & v_{12}^{c} & \cdots & v_{1 d}^{c} \\
v_{21}^{c} & v_{22}^{c} & \cdots & v_{2 d}^{c}
\end{array}\right] \\
& =\left[\begin{array}{llllll}
\sigma_{1}^{c} v_{11}^{c} \mathbf{u}_{1}^{c}+\sigma_{2}^{c} v_{21}^{c} \mathbf{u}_{2}^{c} & \sigma_{1}^{c} v_{12}^{c} \mathbf{u}_{1}^{c}+\sigma_{2}^{c} v_{22}^{c} \mathbf{u}_{2}^{c} & \cdots & \sigma_{1}^{c} v_{1 d}^{c} \mathbf{u}_{1}^{c}+\sigma_{2}^{c} v_{2 d}^{c} \mathbf{u}_{2}^{c}
\end{array}\right] \\
& \mathbf{a}_{j}^{c}=\alpha_{j 1} \mathbf{u}_{1}^{c}+\alpha_{j 2} \mathbf{u}_{2}^{c} \\
& \mathbf{a}_{i}^{c}=\beta_{i 1} \mathbf{v}_{1}^{c}+\beta_{i 2} \mathbf{v}_{2}^{c} \\
& \left\{\begin{array}{c}
\alpha_{j 1} u_{11}^{c}+\alpha_{j 2} u_{12}^{c}=a_{1 j}^{c} \\
\alpha_{j 1} u_{21}^{c}+\alpha_{j 2} u_{22}^{c}=a_{2 j}^{c} \\
\vdots \\
\alpha_{j 1} u_{s 1}^{c}+\alpha_{j 2} u_{s 2}^{c}=a_{s j}^{c}
\end{array}\right. \\
& \left\{\begin{array}{c}
\beta_{i 1} v_{11}^{c}+\beta_{i 2} v_{12}^{c}=a_{i 1}^{c} \\
\beta_{i 1} v_{21}^{c}+\beta_{i 2} v_{22}^{c}=a_{i 2}^{c} \\
\vdots \\
\beta_{i 1} v_{t 1}^{c}+\beta_{i 2} v_{t 2}^{c}=a_{i t}^{c}
\end{array}\right. \\
& \text { Reference: } \\
& \text { H. Zhao, D. D. Wang, L. Chen, X. Liu, and H. Yan, } \\
& \text { PLoS ONE, 11(9): e0162293:1-27, } 2016 .
\end{aligned}
$$

Decomposition of a 3D Co-cluster

Truncated HOSVD for tensor approximation $\operatorname{Rank}\left(r_{1}, r_{2}, \ldots, r_{N}\right)$

$\mathscr{A}=\mathscr{T} \times{ }_{1} \mathbf{U}^{(1)} \ldots \times{ }_{N} \mathbf{U}^{(N)}$
$\mathbf{A}_{(n)}=\mathbf{U}^{(n)} \Sigma^{(n)}\left(\mathbf{V}^{(n)}\right)^{T}, n=1, \ldots, N$

Hyperplane Structure

If \boldsymbol{C} is a coherent matrix, then $\operatorname{rank}(\boldsymbol{C}) \leq 2$.
\square If a coherent pattern $\boldsymbol{A}_{c}=\boldsymbol{U}_{c} \boldsymbol{\Lambda}_{c} V_{c}^{T}$, then the column vectors of \boldsymbol{U}_{c} and V_{c} are linearly dependent, i.e.

$$
\left\{\begin{array}{l}
k_{1 u} u_{1 c}+k_{2 u} u_{2 c}+b_{u} \mathbf{1}=0 \\
k_{1 v} v_{1 c}+k_{2 v} v_{2 c}+b_{v} \mathbf{1}=0
\end{array}\right.
$$

\square If a coherent pattern $\mathcal{A}_{c}=\boldsymbol{J}_{c} \times_{1} \boldsymbol{U}_{1 c} \times_{2} \boldsymbol{U}_{2 c} \cdots \times_{N} \boldsymbol{U}_{N c}$, then the column vectors of $U_{i c}$ are linearly dependent, i.e.

$$
\left\{\begin{array}{c}
k_{11} \boldsymbol{u}_{1 c}^{1}+k_{12} \boldsymbol{u}_{1 c}^{2}+\cdots k_{1 r_{1}} \boldsymbol{u}_{1 c}^{r_{1}}+b_{1} \mathbf{1}=0 \\
\vdots \\
k_{N 1} \boldsymbol{u}_{N C}^{1}+k_{N 2} \boldsymbol{u}_{N c}^{2}+\cdots k_{N r_{N}} \boldsymbol{u}_{1 c}^{r_{N}}+b_{N} \mathbf{1}=0
\end{array}\right.
$$

Co-cluster Scoring Function

2D Data

$$
S(\mathbf{I}, \mathbf{J})=\min _{i \in \mathbf{I}, j \in \mathbf{J}}\left(S_{\mathbf{I} \mathbf{j}}, S_{i \mathbf{J}}\right)=\min _{i \in \mathbf{I}, j \in \mathbf{J}}\left[1-\frac{1}{|\mathbf{J}|-1} \sum_{q \neq j, q \in \mathbf{J}} \rho\left(\mathbf{a}_{\mathbf{I j}}, \mathbf{a}_{\mathbf{I q}}\right), 1-\frac{1}{|\mathbf{I}|-1} \sum_{q \neq i, q \in \mathbf{I}} \rho\left(\mathbf{a}_{i \mathbf{J}}, \mathbf{a}_{q \mathbf{J}}\right)\right]
$$

N-D Data

Pair row and column indices
Check coherence and filter out noisy patterns

2D Co-clusters in Singular Vector Spaces

x_{1} x_{2} x_{3} x_{4} x_{5}					
y_{1}	19	94	35	26	41
y_{2}	76	78	23	42	76
y_{3}	26	43	51	36	47
y_{4}	33	19	25	40	60
y_{5}	5	78	64	82	65
y_{6}	40	89	47	47	72
y_{7}	92	90	21	24	72
y_{8}	46	99	66	51	89

	x_{1}		x_{2}	x_{3}
x_{4}				
	3.0	1.0	4.0	5.0
y_{1}	3			
y_{2}	6.0	4.0	7.0	8.0
y_{3}	7.0	5.0	8.0	9.0
y_{4}	2.0	0.0	3.0	4.0
y_{5}	3.0	-1.5	4.5	6.0
y_{6}	6.0	-3.0	9.0	12.0
y_{7}	7.0	-3.5	10.5	14.0
y_{8}	2.0	-1.0	3.0	4.0

u_{1}	u_{2}	v_{1}	v_{2}
-0.21	0.12	-0.41	0.23
-0.36	0.50	0.01	0.96
-0.41	0.63	-0.56	0.04
-0.16	-0.01	-0.72	-0.16
-0.24	-0.18		
-0.48	-0.35		
-0.56	-0.41		
-0.16	-0.12		

3D Co-clusters in Singular Vector Spaces

			$x_{3} x$	$x_{4} x_{5}$	$x_{5} x_{6} x_{7}$	u_{1}	u_{2}	u_{3}	v_{1}	v_{2}	v_{3}			${ }_{2} x_{3}$	x_{4}	x_{4}	$x_{5} x_{6}$		u_{1}	u_{5}	D		v_{4}	D
y_{1}	3	1	5	51	100	-0.24	-0.53-	-0.06	-0.47	0.10	-0.18	y_{1}	31	4	45	52	21	5	-0.20	0.14	0.00	-0.45	-0.09	0.00
y_{2}	6	4		80	010	-0.44	0.00	0.30	-0.31	0.84	0.15	y_{2}	64		8	83	36		-0.36	-0.14	0.00	-0.33	0.31	0.00
y_{3}	7	5		90	001	-0.50	0.21-	-0.11	-0.55-	-0.12	-0.30	y_{3}	75	8	89	93	30		-0.39.	0.16	0.00	-0.42	0.14	0.00
y_{4}	2	0		40	010	-0.17	-0.57	0.24	-0.62-	-0.38	0.36	y_{4}	20	3	34	48	81	4	-0.20.	0.22	0.00	-0.50	-0.35	0.00
y_{5}	8	6		100	001	-0.57	0.36-	-0.09	-0.02-	-0.29	-0.38	y_{5}	86			06	62	5	-0.43	0.02	0.00	-0.33	0.07	0.03
y_{6}	5	3		71	100	-0.37	-0.24-0.0	-0.03	-0.02	0.00	0.41	y_{6}	53				92	0	-0.30.	0.06	0.00	-0.19	-0.50	0.34
y_{7}	1	0		01	100	-0.02	-0.07-	-0.23	-0.04	0.19	-0.64	y_{7}	72		41	1	38	2	-0.22.	-0.24	0.05	-0.34	0.70	0.05
y_{8}	0	1		00	010	-0.01	0.28	0.23				y_{8}	27	78	84	45	50		-0.25.	-0.53	0.63			
y_{9}	0	0		00	001	-0.02	0.02-	-0.38				y_{9}	96	2	25	56	61	2	-0.29.	0.21	0.15			
y_{10}	0	0		00	001	-0.02	0.02	-0.38				y_{10}	37	74	48	80	05		-0.28	-0.40	0.27			
y_{11}	0	1	0	00	010	-0.01	0.28	0.23		(a)			70	2	28	80	01	2	-0.21.	0.58	0.51		(b)	
y_{12}	1	0	1	01	101	-0.04	-0.04	-0.61				y_{12}	65	1	10	05	51	7	-0.21.	0.03	0.12			

Detection of Hyperplanes

Detect linear patterns in data sets
> Scaling of the variable
> Generation of the starting hyperplanes
> Initialization of the groups
> Iterative refinement
> Resampling

Scale the variables for $i=1, \cdots, d$,

$$
\widetilde{y}_{i}=\frac{y_{i}}{s_{i}}(i=1, \cdots, d), s_{i}=\sqrt{\frac{1}{n-1}\left(y_{i}-\bar{y}_{\mathrm{i}}\right)^{T}\left(y_{\mathrm{i}}-\bar{y}_{\mathrm{i}}\right)}
$$

Randomly select \boldsymbol{K} random sub-samples of size $\boldsymbol{d}, \boldsymbol{G}^{\mathbf{0}}=\left\{\boldsymbol{g}_{\mathbf{1}}^{\mathbf{0}}, \cdots, \boldsymbol{g}_{\boldsymbol{K}}^{\mathbf{0}}\right\}$
Iterative procedure
Initializing K hyperplanes

$$
h_{k}^{j}\left(\widehat{\alpha}_{k}, \widehat{\beta}_{k}\right)=\left\{\widetilde{x} \mid \alpha_{k}^{T} \widetilde{x}=\beta_{k}, \widetilde{x} \in g_{k}^{j},\left\|\alpha_{k}\right\|=1\right\}(k=1, \cdots, K)
$$

Compute $d_{i k}^{j}=\operatorname{distance}\left(\widetilde{\boldsymbol{x}}_{i}, h_{k}^{j}\right)=\left|\widehat{\boldsymbol{\alpha}}_{k}^{T} \widetilde{x}_{i}-\widehat{\boldsymbol{\beta}}_{k}\right|$

Reference:
H. Zhao, D. D. Wang, L. Chen, X. Liu, and H. Yan, PLoS ONE, 11(9): e0162293:1-27, 2016.

Forming K groups for \boldsymbol{n} samples such that

$$
\widetilde{x}_{i} \in g_{k}^{j+1} \text { if } k=\operatorname{argmin}_{k}\left(d_{i k}^{j}\right)
$$

Computing the cost function $D^{j}=\sum_{k=1}^{K} \sum_{\widetilde{x}_{i} \in g_{k}^{j+1}} d_{i k}^{j}$
End

Coherent Pattern Detection Algorithm

Experiments on Simulated Triclusters

a

b

Comparison with Other Methods

Matrix size: 500×200, Bicluster size: 50×50

Example of 3D Data

A higher-order time series dataset about genomic expression of multiple sclerosis patients after IFN-b injection treatment.
> Patient: Twelve patients
> Time: EDTA blood
samples from patients before baseline as well as 2 days, 1 month, 1 year, and 2 years after the initiation of IFN-beta therapy.
> Gene: 56 significant
genes involved in IFNrelated pathways treatment.

2D Slices of Sclerosis Data

Analysis of Sclerosis Data

Example of Co-cluster in Sclerosis Data

GO \& Pathway Analysis of Sclerosis Data

13 genes: CXCL10, EIF2AK2, IFIT1, IRF7, IRF9, ISG15, ISG20, MX1, NFKB1, OAS1, RSAD2, STAT1, TLR8;

6 patients: with the common clinical features such as the shorter disease duration, the lower EDSS scores, and relapses prior to 1 year;

2 time points: baseline and 1 year

Table 1 Biological process of 13 annotated genes in $C P_{121}$.			
GO term	Description	P-value	Enrichment
$\begin{aligned} & \text { GO: } \\ & 0002252 \end{aligned}$	immune effector process	8.81E-5	2.07 (56,25,13,12)
$\begin{aligned} & \text { GO: } \\ & 0051607 \end{aligned}$	defense response to virus	1.17E-4	2.26 (56,21,13,11)
$\begin{aligned} & \text { GO: } \\ & 0045069 \end{aligned}$	regulation of viral genome replication	2.12E-4	3.35 (56,9,13,7)
GO: 0045071	negative regulation of viral genome replication	$2.12 \mathrm{E}-4$	3.35 (56,9,13,7)
GO: 0009615	response to virus	$2.77 \mathrm{E}-4$	1.91 (56,27,13,12)
$\begin{aligned} & \text { GO: } \\ & 0050792 \end{aligned}$	regulation of viral process	$6.28 \mathrm{E}-4$	3.02 (56,10,13,7)
$\begin{aligned} & \text { GO: } \\ & 0048525 \end{aligned}$	negative regulation of viral process	$6.28 \mathrm{E}-4$	3.02 (56,10,13,7)

Pathway annotated	Term	P-value	Adjusted P-value
BIOCARTA	Bone remodelling	2.3E-4	1.0E-2
BIocarta	IFN alpha signaling pathway	$1.9 \mathrm{E}-2$	$3.5 \mathrm{E}-1$
BIOCARTA	Double stranded RNA induced gene expression	$1.9 \mathrm{E}-2$	$3.5 \mathrm{E}-1$
BIOCARTA	Inactivation of Gsk3 by AKT causes accumulation of b-catenin in alveolar macrophages	5.9E-2	$6.0 \mathrm{E}-1$
BIOCARTA	Toll-like Receptor Pathway	7.5E-2	5.9E-1
KEGG_PATHWAY	Toll-like receptor signaling pathway	2.1E-6	4.3E-5
KEGG_PATHWAY	RIG-I-like receptor signaling pathway	5.1E-5	5.1E-4
KEGG_PATHWAY	Cytosolic DNA-sensing pathway	$1.7 \mathrm{E}-3$	1.1E-2
KEGG_PATHWAY	Chemokine signaling pathway	$1.8 \mathrm{E}-2$	8.8E-2
KEGG_PATHWAY	Pancreatic cancer	8.2E-2	$2.9 \mathrm{E}-1$

C. Elegans Life Cycle

Picture from
www.wormatlas.org/ver1/handbook/anatomyintro /anatomyintro.htm

Picture from
http://www.mun.ca/biology/scarr/4241_Devo_
Caenorhabditis\%20elegans\%20devo.jpg

C. Elegans Cell Division

Image/video acquisition

Analysis of image/video (Tera bytes of data)

Images to lineage tree

References:
L Chen, LLH Chan, Z Zhao, H Yan, BMC Bioinformatics, 14:328, 2013.
J Cao, MK Wong, Z Zhao, and H Yan, BMC Bioinformatics, 20:176, 2019.

Cell Matching and Matching

References: L Chen, Z Zhao, and H Yan, IEEE J. Selected Topics in Signal Processing, 10(1):185-192, 2016. L Chen, Z Zhao, and H Yan, "Method for tracking an object in an image sequence," United States Patent 10,255,692, 2019.

C. Elegans Cell Division Lineage Tree

Tensor data:

1219 genes, 8 founder cells (AB branches), 14 descendants

References:
XT Huang, L Chen, H Chim, L Chan, Z Zhao, and H Yan, BioMedical Engineering OnLine, 12 (Suppl 1):S1, 2013.

VW S Ho, MK Wong, X An1, D Guan, J Shao, HCK
Ng, X Ren, K He, J Liao, Y Ang, L Chen, X Huang, B Yan, Y Xia, LLH Chan, KL Chow, H Yan, and Z Zhao, Molecular Systems Biology,11:814, 2015.
XT Huang, Y Zhu, LLH Chan, Z Zhao, and H Yan, Molecular BioSystems, 12:85-92, 2016.
J Cao, G Guan, VWS Ho, MK Wong, LY Chan, C
Tang, ZY Zhao, and H Yan, Nature Communications, 11:6254:1-14, 2020.

Analysis of C. Elegans Data

Example of Co-cluster in C. Elegans Data

Feature Modes in C. Elegans Data

Table 3 The linear groups of the feature modes in the tensor data

Features modes	The corresponding linear groups in tensor data	
	G1	The number of genes in the group is 42.
Mode 1:	G2	The number of genes in the group is 729 .
Perturbed genes	G3	The number of genes in the group is 379 .
	G4	The number of genes in the group is 69.
Mode 2:	G1	"*a" "*aa" "*aaa" "*ap" "*p" "*pa" "*pap" "*pp"
descendant cells	G2	"*aap" "*apa" "*app" "*paa" "*ppa" "*ppp"
Mode 3:	G1	"ABala" "ABalp" "ABpla" "ABplp" Terminal cells
founder cells	G2	"ABara" "ABarp" "ABpra" "ABprp"

GO / Pathway Analysis of C. Elegans Data

| Table 4 The functional categories annotated by 42 genes in minimum $\delta=0.0702$ in CP122 | | | |
| :--- | :--- | :--- | :--- | :--- |
| Functional
 categories | Term | P-value | adjusted p-value |
| G0:0009792 | Embryonic development ending in
 birth or egg hatching | $8.0 \mathrm{E}-4$ | $1.1 \mathrm{E}-1$ |
| G0:0006260 | DNA replication | $4.1 \mathrm{E}-3$ | $2.6 \mathrm{E}-1$ |
| GO:0006259 | DNA metabolic process | $4.4 \mathrm{E}-2$ | $8.9 \mathrm{E}-1$ |
| KEGG_PATHWAY | Mismatch repair | $2.3 \mathrm{E}-2$ | $3.2 \mathrm{E}-1$ |
| KEGG_PATHWAY | DNA replication | $4.4 \mathrm{E}-2$ | $3.0 \mathrm{E}-1$ |

42 genes, 6 terminal cells and 4 daughter cells of ABar and ABpr

Protein Torsion Angles

Protein Structure

Reference: https://en.wikipedia.org/wiki/Protein_structure
Protein 3D structure prediction: "Holy Grail" problem
Related problems: Protein / DNA / RNA / ligand interactions

Alpha-Helix and Beta-Sheet

beta sheet

Reference: http://book.bionumbers.org/what-is-the-energy-of-a-hydrogen-bond/

Protein Secondary Structure Prediction

>5000 features:
amino acids, neighbours, hydrogen bonds
$15,310 \alpha$-helices, $20,847 \beta$-strands
Co-clustering for feature selection
Selected features used for classification

Test	Three largest co-clusters (Row \times Column $)$	Testing accuracy $(1$ co-cluster)	Testing accuracy $(2$ co-clusters)	Testing accuracy $(3$ co-clusters)
1	$4284 \times 10,1696 \times 9,1800 \times 7$	0.8426	0.9630	0.9868
2	$4270 \times 10,1706 \times 9,1379 \times 8$	0.8645	0.9706	1.0000
3	$4314 \times 10,2214 \times 8,1358 \times 8$	0.8587	0.9447	0.9664
4	$4314 \times 10,1772 \times 9,1638 \times 8$	0.8643	0.9640	0.9900
5	$4420 \times 10,1733 \times 9,1454 \times 8$	0.8600	0.9633	0.9630

Reference: L Ma, DD Wang, X Liu, B Zou, and H Yan, Current Bioinformatics, 12(3):213-224, 2017.

Human Facial Expressions

Even higher dimensionality
Picture x Expression x Person x Age
Picture \times Expression \times Directional wavelets

Gabor Wavelet Features

$$
\begin{aligned}
G_{\vec{k}}(\vec{r}) & =G_{\vec{k},+}(\vec{r})+i G_{\vec{k},-}(\vec{r}) \\
G_{\vec{k},+}(\vec{r}) & =\frac{k^{2}}{\delta^{2}} \exp \left(\frac{k^{2}\left\|r-r_{o}\right\|^{2}}{-2 \delta^{2}}\right) \cos \left[\vec{k}\left(\vec{r}-\overrightarrow{r_{o}}\right)\right] \\
G_{\vec{k},-}(\vec{r}) & =\frac{k^{2}}{\delta^{2}} \exp \left(\frac{k^{2}\left\|r-r_{o}\right\|^{2}}{-2 \delta^{2}}\right) \sin \left[\vec{k}\left(\vec{r}-\overrightarrow{r_{o}}\right)\right]
\end{aligned}
$$

				$=$			
III	III			三			
(i)	III		\%	三	N	(1)	11
	171	Pf	"	E	+	H	1
	71	\%)	=			

Reference: A Amin, H Yan, Int'I J. Pattern Recognition and Artificial Intelligence, 23(3): 401-431, 2009.

Feature Selection based on Co-clustering

537 samples, 19200 features
Co-clustering for feature selection Selected features used for classification

All 19200 features used	\rightarrow	89.23%
3891 (20\%) features retained	\rightarrow	96.14%
191 (0.9\%) features retained	\rightarrow	90.23%

Reference: S Khan, LChen, and H Yan, IEEE T Affective Computing, 11(2):348-360, 2020.

Summary

- Coherent patterns may exist in multidimensional data
- Coherent patterns can be represented as low-rank matrices or tensors
- Coherent patterns can be detected in singular vector spaces
- Coherent patterns correspond to natural groups in multidimensional data
- Co-clustering can be used to analyze other "big data"

End of Presentation

E-mail: h.yan@cityu.edu.hk Websites: http://www.ee.cityu.edu.hk/~hpyan https://www.innocimda.com

Thank you attending the presentation

[^0]: Reference:
 B Liu, CW Yu, DZ Wang, RCC Cheung, H Yan,
 IEEE T PDS, 25(10):2540-2550, 2014.

