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Multidimensional Big Data

Example 1: Gene × Condition × Time

Example 2: Document × Key word × Region

Example 3: Speech × Frequency× Time

Reference: https://www.statista.com/statistics/871513/worldwide-data-created/

Higher-order tensor

Multi-way data array

Multidimensional data
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Numerical Computation and Data Analysis

Numerical Computation:
FORTRAN: 1950’s, SVD: 1950’s~70’s
LINPACK, EISPACK, MINPACK: 1970’s~80’s
MATLAB: 1980’s, R: 1990’s, LAPACK: 1990’s

Information Processing:
Digital signal, image and video processing
Data acquisition, storage, retrieval, transmission, security
Computational linguistics, internet search, business intelligence 

Artificial Intelligence (Data Driven):
Machine learning, deep learning
Intelligent robot and autonomous vehicles  
Data mining, pattern matching and decision making

4



Focus of This Talk: Coherent Pattern Detection
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Coherent Pattern Detection:
Input: big multidimensional data
Output: smaller coherent patterns

Techniques:
Matrix / tensor decomposition
Low-rank matrix / tensor identification
Hyperplane models for coherent pattern detection

Applications:
Disease diagnosis based on gene expression data
Cell division data analysis
Removal of irrelevant features
Protein secondary structure prediction
Human facial expression analysis and classification

Stigma:
* NP-hard
* Inherently intractable



Machine Learning Methods
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Machine 
Learning

Bayes
Decision region formation:

Lines, curves, planes, spheres
Decision trees, Random forests
Linear / nonlinear / logistic regression
Support vector machines
Artificial neural networks

Dimensionality reduction (PCA, SVD, …)
Hidden Markov model
Clustering, k-means, hierarchical, …
Graph cutting
Minimum spanning trees
Hough transform
Self-organizing maps

Supervised 
Learning

Unsupervised 
Learning



Clustering and Co-clustering
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Classification in one direction only Classification in 
both directions



Differences between PCA and Co-clustering

x1 = (x11, x12, …, x1n)
x2 = (x21, x22, …, x2n)
……
xm = (xm1, xm2, …, xmn)

Input data:
m × n matrix
m samples
n features

PCA: compute PCs
All samples and all features
contribute to the PCs

Co-clustering: look for subsets
Some samples and some features
contribute to the co-clusters
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Genes and Conditions

Gene 1

Gene M
Condition 1

Condition 2

Condition N

Gene 1

Gene M

Gene M

Gene 1

Conditions:
Time points, organs, species, etc
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Microarray Data Matrix

M Genes

N Conditions
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Different Types of Co-clusters

Constant Constant row Constant column

Additive Multiplicative Linear
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Example of Existing Methods
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Column average

Row average

Pattern average

I: subset of genes
J: subset of conditions
I X J: bicluster

Cheng and Church’s Algorithm



Geometrical Interpretations: Our Approach
Constant
z = x = a

Constant 
row  z = x

Constant 
column
x = a, z = b

Additive
z = x + b

Multiplicative
z = a x

General
linear
z = a x + b
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The Hough Transform

References: H Yan, IEEE Trans. SMC, Part B, 34(1):210-221, 2004;
H Yan, "Curve tracing system," United States Patent 7263538, 2007.
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Lines in the Hough Space

x

y

(x1, y1)

(x2, y2)

y = a x + b

(xk, yk)
a

b

b = - a x2 + y2
b = - a x1 + y1

bopt

aopt

b = - a xk + yk
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amin amax

bmax

bmin

Data space Hough space Quantized parameters
(Voting ballot counting)

Similar Method: Radon Transform (projections at different angles) 



Hyperplane in Object Space

Hyperplane equation

Condition variables

Hyperplane coefficients

Parameter value range
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Hyperplane in Parameter Space

Hyperplane coefficients

Hyperplane variables

Hyperplane equation in parameter space

Original hyperplane
equation in 
object space

Normalization
Only k out of M variables needed

References: X Gan, A Liew, and H Yan, BMC Bioinformatics, 9:209, 2008; 
X Gan, A Liew, and H Yan, "Representation and extraction of biclusters from data arrays," US Patent 7849088, 2010.
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The Fast Hough Transform
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Root

(0, 0)
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(1, 1)

(10, 00)
(10, 01) (11, 00)

(11, 11)

k-tree representation

Test for hyperplane and hypercube intersection

Developed by:
Li, Levin and Le Master



Cancer Diagnosis based on Co-clustering

298 genes
13 conditions

349 genes
11 conditions

156 genes
2 conditions

Human Lymphoma Data

641 genes
42 conditions

830 genes
34 conditions

Breast Cancer Data

References: 
X Gan, A Liew, and H Yan, 
BMC Bioinformatics, 9:209, 2008; 
X Gan, A Liew, and H Yan, 
"Representation and extraction 
of biclusters from data arrays," 
US Patent 7849088, 2010.
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Drug Therapeutic Effect Assessment

-π/2 -π/4 π/20 π/4-1.5

-1
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1

1.5B = R

Slant axis: perfect drug
II, V: drug works, not enough
III, VI: drug works, too strong
I, IV: bad drug, side effect

References: H. Zhao and H. Yan, BMC Bioinformatics, 8:256, 2007, 
P. Tino, H. Zhao, and H. Yan, IEEE Trans. Computational Biology & Bioinformatics, 8:1093-1107, 2011.
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Co-expressed Genes in Human Organs

Reference: H. Zhao, A. W. C. Liew, X. Xie, and H. Yan, Journal of Theoretical Biology, 251(3):264-274, 2008.
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GPU Based Accelerators

Reference: B Liu, Y Xin, RCC Cheung, and H Yan, Neurocomputing, 134:239–246, 2014.
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FPGA Based Accelerators

Reference:
B Liu, CW Yu, DZ Wang, RCC Cheung, H Yan, 
IEEE T PDS, 25(10):2540-2550, 2014.

Processing Element (PE)   

FPGA Architecture
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Complexity of HT for Many Variables

Assume:
Number of variables: M
Quantization level: N

 Number of cells: M N Too many for large M!

Solution:
Take 2 columns at a time
 Analysis in column-pair spaces
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Analysis in Column-pair Spaces

(1, 2)  sub-co-cluster
(1, 3)  sub-co-cluster
… …
(2, 3)  sub-co-cluster
(2, 4)  sub-co-cluster
… …
(3, 4)  sub-co-cluster
(3, 5)  sub-co-cluster
… ….

Merge sub-co-clusters
Form larger ones
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Limitations of Column-Pair Approach

Procedure:
Consider each column pair
Detect sub-co-clusters (with 2 columns and many rows)
Merge sub-co-clusters

Limitations:
Tow many column pairs for higher dimensional data
Noise causes too many small sub-co-clusters
Results depend on order of the merging process

Solution:
Perform analysis in singular vector spaces
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Co-clusters as Low-Rank Matrices

Constant Constant row Constant column

Additive Multiplicative Linear

Coherent pattern  Low rank matrix Rank at most 2

Rank = 1 Rank = 1 Rank = 1

Rank = 2 Rank = 1 Rank = 2
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Detection of Low-Rank Sub-matrices

Find locations of relevant elements

Together they form a low rank matrix

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

XAAXXXAXXX XAXAXXAXXX XAXXXAXXXA

XXXXXXXXXX XAXAXXAXXX XXXXXXXXXX

XXXXXXXXXX XXXXXXXXXX XAXXXAXXXA

XAAXXXAXXX XAXAXXAXXX XAXXXAXXXA

XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

XXXXXXXXXX XBXBXXBXXX XXBXBBXXXX

XAAXXXAXXX XXXXXXXXXX XXBXBBXXXX

XXXXXXXXXX XBXBXXBXXX XXXXXXXXXX

XXXXXXXXXX XBXBXXBXXX XXBXBBXXXX
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Decomposition of a 2D Co-cluster
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Reference:
H. Zhao, D. D. Wang, L. Chen, X. Liu, and H. Yan, 
PLoS ONE, 11(9): e0162293:1-27, 2016.



Decomposition of a 3D Co-cluster

Truncated HOSVD for
tensor approximation
Rank (r1, r2, …, rN)
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Hyperplane Structure
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Co-cluster Scoring Function
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Pair row and column indices
Check coherence and filter out noisy patterns



2D Co-clusters in Singular Vector Spaces
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3D Co-clusters in Singular Vector Spaces
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Detection of Hyperplanes
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Reference:
H. Zhao, D. D. Wang, L. Chen, X. Liu, and H. Yan, 
PLoS ONE, 11(9): e0162293:1-27, 2016.



Coherent Pattern Detection Algorithm
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Reference:
H. Zhao, D. D. Wang, L. Chen, X. Liu, and H. Yan, 
PLoS ONE, 11(9): e0162293:1-27, 2016.



Experiments on Simulated Triclusters
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Comparison with Other Methods

Matrix size: 500 x 200, Bicluster size: 50 x 50
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Example of 3D Data
A higher-order time series 
dataset about genomic 
expression of multiple sclerosis 
patients after IFN-b injection 
treatment. 

 Patient: Twelve patients
 Time: EDTA blood 

samples from patients 
before baseline as well as 
2 days, 1 month, 1 year, 
and 2 years after the 
initiation of IFN-beta 
therapy. 

 Gene: 56 significant 
genes involved in IFN-
related pathways 

Linear structures along
3 directions
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2D Slices of Sclerosis Data
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Analysis of Sclerosis Data
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Example of Co-cluster in Sclerosis Data
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GO & Pathway Analysis of Sclerosis Data 

GO term Description P-value Enrichment
GO:
0002252 immune effector process 8.81E-5 2.07 (56,25,13,12)

GO:
0051607

defense response to 
virus 1.17E-4 2.26 (56,21,13,11)

GO:
0045069

regulation of viral 
genome replication 2.12E-4 3.35 (56,9,13,7)

GO:
0045071

negative regulation of 
viral genome replication 2.12E-4 3.35 (56,9,13,7)

GO:
0009615 response to virus 2.77E-4 1.91 (56,27,13,12)

GO:
0050792

regulation of viral 
process 6.28E-4 3.02 (56,10,13,7)

GO:
0048525

negative regulation of 
viral process 6.28E-4 3.02 (56,10,13,7)

13 genes: CXCL10, EIF2AK2, IFIT1, IRF7, IRF9, ISG15, ISG20, MX1, NFKB1, OAS1, 
RSAD2, STAT1, TLR8;

6 patients: with the common clinical features such as the shorter disease 
duration, the lower EDSS scores, and relapses prior to 1 year; 

2 time points: baseline and 1 year

Pathway 
annotated Term P-value Adjusted 

P-value
BIOCARTA Bone remodelling 2.3E-4 1.0E-2
BIOCARTA IFN alpha signaling pathway 1.9E-2 3.5E-1

BIOCARTA Double stranded RNA induced 
gene expression 1.9E-2 3.5E-1

BIOCARTA
Inactivation of Gsk3 by AKT 
causes accumulation of b-catenin 
in alveolar macrophages 

5.9E-2 6.0E-1

BIOCARTA Toll-like Receptor Pathway 7.5E-2 5.9E-1

KEGG_PATHWAY Toll-like receptor signaling 
pathway 2.1E-6 4.3E-5

KEGG_PATHWAY RIG-I-like receptor signaling 
pathway 5.1E-5 5.1E-4

KEGG_PATHWAY Cytosolic DNA-sensing pathway 1.7E-3 1.1E-2
KEGG_PATHWAY Chemokine signaling pathway 1.8E-2 8.8E-2
KEGG_PATHWAY Pancreatic cancer 8.2E-2 2.9E-1
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C. Elegans Life Cycle

Picture from 
http://www.mun.ca/biology/scarr/4241_Devo_
Caenorhabditis%20elegans%20devo.jpg

Picture from 
www.wormatlas.org/ver1/handbook/anatomyintro
/anatomyintro.htm
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C. Elegans Cell Division

References: 
L Chen, LLH Chan, Z Zhao, H Yan, BMC 
Bioinformatics, 14:328, 2013.
J Cao, MK Wong, Z Zhao, and H Yan, 
BMC Bioinformatics, 20:176, 2019.

Image/video acquisition Analysis of image/video (Tera bytes of data)

Images to lineage tree
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Cell Matching and Matching

References: L Chen, Z Zhao, and H Yan, IEEE J. Selected Topics in Signal Processing, 10(1):185-192, 2016.
L Chen, Z Zhao, and H Yan, "Method for tracking an object in an image sequence," United States Patent 10,255,692, 2019.
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C. Elegans Cell Division Lineage Tree

Tensor data: 
1219 genes, 
8 founder cells
(AB branches),
14 descendants

References:
XT Huang, L Chen, H Chim, L Chan,  Z Zhao, and H 
Yan, BioMedical Engineering OnLine, 12 (Suppl 
1):S1, 2013.
VW S Ho, MK Wong, X An1, D Guan, J Shao, HCK 
Ng, X Ren, K He, J Liao, Y Ang, L Chen, X Huang, B 
Yan, Y Xia, LLH Chan, KL Chow, H Yan, and Z Zhao, 
Molecular Systems Biology,11:814, 2015.
XT Huang, Y Zhu, LLH Chan, Z Zhao, and H Yan, 
Molecular BioSystems, 12:85-92, 2016.
J Cao, G Guan, VWS Ho, MK Wong, LY Chan, C 
Tang, ZY Zhao, and H Yan, Nature Communications, 
11:6254:1-14, 2020.
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Analysis of C. Elegans Data
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Example of Co-cluster in C. Elegans Data
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Feature Modes in C. Elegans Data
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GO / Pathway Analysis of C. Elegans Data
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Protein Torsion Angles
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Phi / Psi space:
N residues and 1o sampling interval
3602N possibilities
How to do the optimization: Levinthal's paradox

Reference: 
https://www.studyblue.com/notes/note/n/chapter-4-1-
biochemistry/deck/2294117
http://oregonstate.edu/instruct/bb450/450material/lecture/protein
structureIoutline.html



Protein Structure
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Reference: https://en.wikipedia.org/wiki/Protein_structure
Protein 3D structure prediction: “Holy Grail” problem
Related problems: Protein / DNA / RNA / ligand interactions



Alpha-Helix and Beta-Sheet
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Reference: http://book.bionumbers.org/what-is-the-energy-of-a-hydrogen-bond/



Protein Secondary Structure Prediction
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> 5000 features:
amino acids, neighbours, hydrogen bonds

15,310 α-helices, 20,847 β-strands
Co-clustering for feature selection
Selected features used for classification

Reference: L Ma, DD Wang, X Liu, B Zou, and H Yan, Current Bioinformatics, 12(3):213-224, 2017.

Test Three largest co-clusters 
(Row x Column)

Testing accuracy 
(1 co-cluster)

Testing accuracy
(2 co-clusters)

Testing accuracy
(3 co-clusters)

1 4284 x 10, 1696 x 9, 1800 x 7 0.8426 0.9630 0.9868
2 4270 x 10, 1706 x 9, 1379 x 8 0.8645 0.9706 1.0000
3 4314 x 10, 2214 x 8, 1358 x 8 0.8587 0.9447 0.9664
4 4314 x 10, 1772 x 9, 1638 x 8 0.8643 0.9640 0.9900
5 4420 x 10, 1733 x 9, 1454 x 8 0.8600 0.9633 0.9630



Human Facial Expressions

 

Happier

x

y

Expression

x

y

Person
Even higher dimensionality

Picture x Expression x Person x Age
Picture x Expression x Directional wavelets
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Gabor Wavelet Features

Reference: A Amin, H Yan, Int'l J. Pattern 
Recognition and Artificial Intelligence, 23(3): 
401–431, 2009.
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Feature Selection based on Co-clustering

Reference: S Khan, L Chen, and H Yan, IEEE T Affective Computing, 11(2):348-360, 2020.
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537 samples, 19200 features
Co-clustering for feature selection
Selected features used for classification

All 19200 features used  89.23%
3891 (20%) features retained  96.14%
191 (0.9%) features retained  90.23%



Summary

• Coherent patterns may exist in multidimensional data
• Coherent patterns can be represented as low-rank 

matrices or tensors
• Coherent patterns can be detected in singular vector 

spaces
• Coherent patterns correspond to natural groups in 

multidimensional data
• Co-clustering can be used to analyze other “big data”
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End of Presentation

E-mail: h.yan@cityu.edu.hk
Websites: http://www.ee.cityu.edu.hk/~hpyan

https://www.innocimda.com

for
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