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Changepoint problems Ty

» Modern technology has facilitated the real-time monitoring of many types

of evolving processes.
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Changepoint problems Ty

» Modern technology has facilitated the real-time monitoring of many types

of evolving processes.
3 [+

=

=
‘e 0"

© Todd Mason, Mason Productions Inc. / LSST Corporation

> Very often, a key feature of interest for data streams is a changepoint.
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From offline to online <

» The vast majority of the changepoint literature concerns the offline

problem (Killick et al., 2012; Wang and Samworth, 2018; Wang et al., 2018; Baranowski et al., 2019; Liu, Gao and Samworth, 2021).
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» The vast majority of the changepoint literature concerns the offline

problem (Killick et al., 2012; Wang and Samworth, 2018; Wang et al., 2018; Baranowski et al., 2019; Liu, Gao and Samworth, 2021).

» Univariate online changepoints have been studied within the
well-established field of statistical process control ouncan, 1952 page, 1954 Bamard, 1959; Fearnhead

and Liu, 2007; Oakland, 2007).

» Much less work on multivariate, online changepoint problems (raracousky et al. 200
Mei,2010: zou et al. 2015 Several methods involve scanning a moving window of fixed
size fOl’ changes (Xie and Siegmund, 2013; Soh and Chandrasekaran, 2017; Chan, 2017).
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Online algorithm

Key definition of an online algorithm:

Definition. The computational complexity for processing a new observation,
and the storage requirements, depend only on the number of bits needed to
represent the new data.
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Online algorithm Ty

Key definition of an online algorithm:

Definition. The computational complexity for processing a new observation,
and the storage requirements, depend only on the number of bits needed to
represent the new data.

» For the purposes of this definition, all real numbers are considered as
floating point numbers.

» Importantly, the computational complexity is not allowed to depend on the
number of previously observed data points.
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Problem setting Y

We consider a high-dimensional online changepoint detection problem for
independent random vectors (X, )nen:

» Data generating mechanism: for some unknown, deterministic time
z € NU {0}, we have

Xi,...,X. ~N,(0,,) and X.i1,X.i0,...~ Ny(0,1,).
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Problem setting Y

We consider a high-dimensional online changepoint detection problem for
independent random vectors (X, )nen:

» Data generating mechanism: for some unknown, deterministic time
z € NU {0}, we have

Xi,...,X. ~N,(0,,) and X.i1,X.i0,...~ Ny(0,1,).

» § = 0: data generated under the null, i.e. no change.

» 0 £ 0: data generated under the alternative, i.e. there exists a change.

» Assume ¥ := ||0]|2 is at least a known lower bound 8 > 0.
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Example of an online algorithm (Page, 1954) P

Let p = 1 and assume 6 > 0. Page’s procedure:

R, = Orﬁrl’?g”i:;+lﬁ(Xi — B/2) = max{R,—1 + B(X, — 8/2),0}.

Threshold T' = T for changepoint declaration.

—— Page's stafistic —— cumulative log-likelihood
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Example of an online algorithm? -4~

Let p = 1 and assume € > 0. Scanning window-based method with window
width w > 0:

n

W= 3 B(Xi - B/2).

1=n—w-+1

w=15

"

—— scanning window stafistic —— cumulative log-likelihood

« log-likelihood per observation
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Example of an online algorithm?

L.I..
Let p = 1 and assume € > 0. Scanning window-based method with window
width w > 0: .
Woo= > B(Xi—B/2).
1=n—w-+1

- Window size w needs to increase when [3 decreases.

w=15

—— scanning window stafistic —— cumulative log-likelihood
« log-likelihood per observation
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Example of an online algorithm? Y

Let p = 1 and assume € > 0. Scanning window-based method with window
width w > 0:

n

W= 3 B(Xi - B/2).

1=n—w-+1

- Window size w needs to increase when [3 decreases.
- Computational complexity depends on f.

—— scanning window stafistic —— cumulative log-likelihood

« log-likelihood per observation
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Procedures and performance measures

A sequential changepoint procedure is an extended stopping time N (w.r.t. the

natural filtration) taking values in N U {oo}.

» The patience of a sequential changepoint procedure N is Eq(NV); also

known as the average run length to false alarm.

» Two types of response delays:

- (Average case) response delay

Eg(N) :=supE; o{(N —2) V0};
z€N

- Worst case response delay

Ey¢(N) :=supesssupE. o{(N — 2) VO | X1, ...

z€N

Thus,

Eg(N) < EJ(N).
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A high-dimensional, multiscale online algorithm: ocd
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Diagonal statistics D

> Write X; = (X},...,X)T € RP. Forn € N, b € R\{0} and j € [p],
define

J. J
R, = max - ;H b(X7 —b/2)
ti’b = argmax Z b(X] —b/2).
OShsn o "ht1

=

1,
HS M /V'M\
oLALM, ‘ \a/™ . .
50 100 150

200
“'—\-‘.
t b

b
2t

> (Ri,b>j€[p] are called the diagonal statistics.
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Off-diagonal statistics

» For each j € [p], compute tail partial sums of length ti‘hb in all coordinates

J € [pl:
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Off-diagonal statistics P

» For each j € [p], compute tail partial sums of length ti,b in all coordinates

J € [pl:

I.. ‘
|
I..
I..
.I
n
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Off-diagonal statistics P

» For each j € [p], compute tail partial sums of length ti,b in all coordinates

J € [pl:

n
J) J
A=Y X/

i J
z_n—tn,b-i-l
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Off-diagonal statistics P

» For each j € [p], compute tail partial sums of length ti p in all coordinates
3" € [pl:
A n -/
Al = Z X7

i J
z_n—tn,b-i-l

gl = iy

» We aggregate to form an off-diagonal statistic anchored at coordinate j:

(Aj'7j)2
= D T e )
nb j 147" >0 /8, b
jelplar# tns V1 ’ ’
» Different values of a can be chosen to detect dense or sparse signals.
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Aggregation -4

> Allow b to range over a (signed) dyadic grid B U B, where

e P o e
B {2t =0 Losalr)

BO = {i ﬁ }
\/2 [log,(2p)] ]0g2 (2]))

» Aggregate diagonal statistics:
Spiee = max RZ;L ,
(4:b)E[p]x (BUBy)
= max bAj»j _ thj 92).
(j7b)€[p]><(BuBO)( n,b n,b/ )

> Aggregate off-diagonal statistics

Soff

o= max Q.

G.bePxB ™

» Declare change when either 5428 or Soff s large.
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Pseudocode P

Algorithm 1: Pseudo-code of the ocd algorithm
Input: X, X,... € RP observed sequentially, 8 > 0, a > 0, 7428 > 0 and T°% > 0

. B— B8 L) — — B8 —
Set.B_{imlf—O,...,LlongJ},Bo—{:I:\/m},n—ﬂ,

Ay=0€RP*? and t, =0 € RP for allb € BUB,
repeat
n<n+1

observe new data vector X, w
for (4,b) € [p] x (BU By) do
thet+1
AP — AV + X,
if bAJ — %] /2 < 0 then
| #«0and 4;7 <0 >

Computational Complexity:
. 0(p*log(ep))
t Q] A 11)2 ]1
compute @y ¢ eyt~ ghvi {1479 12a/5}
54 < max()epp suso) (b4} — bt/2)
Soff max;p)e[p|xB QJb )
until Sdieg > Tdiag o Goff > 7off,
Output: N=n
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Dense, sparse and adaptive versions -

» Dense change: choose a = a9 = (, and let $°fd = §off (adense).

» Sparse change: choose a = a*P*™¢ = | /8log(p — 1), and let
Soff,s _ Soff (asparse)'

» We combine the two cases to form an adaptive procedure, which has
output N = min{Ndmg7 Noff.d NOH’S}, where

Ndiag .— inf{p : §diag > pdiasy
Noffd .= inf{n : Sfff’d > TOH’d}
Noffs . — inf{n : SZH’S > TOH’S}7

for some thresholds 7428 7°ff.d and Toffss,
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Why does ocd work?

» Patience [g(IN) can be guaranteed by choosing thresholds 7418 7off.d
and 7°%5 appropriately.
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Why does ocd work? 5,

» Patience [g(IN) can be guaranteed by choosing thresholds 7418 7off.d
and 7°%5 appropriately.

» Diagonal statistics are useful for detecting changes whose signal is
concentrated in one or few coordinates.

» Off-diagonal statistics are useful in detecting changes whose signal is not
highly concentrated.
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A slight variant of ocd P

> Instead of aggregating over the last tfl’b points, we would like to aggregate

over & tiL »/2 points to form off-diagonal statistics Qi b

LR
. -
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A slight variant of ocd P

> Instead of aggregating over the last tfl’b points, we would like to aggregate

over & til »/2 points to form off-diagonal statistics sz b

12

How can we achieve this in an online manner?

Given a sequence of real observations (X} ):en, how can we keep track of
the sum of the final 7 &~ ¢/2 observations at time ¢ in an online way?
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A slight variant of ocd

Given a sequence of real observations (X ):en, how can we keep track of the
sum of the final 7 & t/2 observations at time ¢ in an online way?

t |1 2 3 4 5 6 7

T 1 1 2 2 3 4 5

AX X | X4 X [ Xt X0 | Xt Xa4 Xs | Xot X | Xato 4 X7 | Kot + X
AloTo X3 0 Xs X5+ Xe X5+ Xo + X7

t/2 <71 < 3t/4fort > 2.
(Part of) modified algorithm: ocd’

for (j,b) € [p] x (BU By) do

L

Online changepoint detection

4+t +1 and A7 + 47 + X,

AT )2

set 6 = 0 if ] is a power of 2 and § = 1 otherwise.
e+ 7 (1—0)+1 and Ay A5+ A (1—6) + Xn
7« (7 +1)6 and A « (A7 + X,,)0.
if bAJ7 —b%t]/2 < 0 then
1«7 <0

A7 — A A 0

J (A
compute @ = X yepriii i L{af zay/r7}

18/27



Theoretical guarantees: patience Y

Choose thresholds

T8 = log{24py log,(4p)}
T4 = 1 (21og{24pylog,(2p)})
Toffs — g log{24p’)/ log, (2p)}

where ¢¥(z) :==p— 1+ 2+ /2(p — 1)z and v > 1 is a user-specified desired
patience level.
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Theoretical guarantees: patience

Choose thresholds
T8 = log{24py log,(4p)}
T4 = 1 (21og{24pylog,(2p)})
7o = 8log{24pylog,(2p)}

where ¢¥(z) :==p— 1+ 2+ /2(p — 1)z and v > 1 is a user-specified desired
patience level.

Theorem. Assume there is no change. Then, the adaptive version of ocd’ with
the above choice of thresholds satisfies Eq(N) > ~.

)

Online changepoint detection
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Theoretical guarantees: response delay

Effective sparsity of § € RP: smallest s = s(0) € {20,2',...,21°82P1} such that

o 19 .
{Je[p].|0|z5(6)10g2(2p>}'z (0).
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S

Theoretical guarantees: response delay -

[,

Effective sparsity of § € RP: smallest s = s(0) € {20,2',...,21°82P1} such that

R 5
femw> >0

Theorem. Assume that change happens at time z and that the post-change
signal 0 satisfies ||0||2 = ¥ > 8 > 0 with effective sparsity s. Then, the adaptive
version of ocd’ with the same choice of thresholds satisfies:

(a) (Worst case response delay)

I_E;VC(N) 5 S log(epgg IOg(ep)

(b) (Average case response delay)

Es(N) < (\/ﬁ 1052(61’7) v Ys log(epﬁ/f) log(ep)) . slog(ep;g log(cp)

V1,

for all sufficiently small 5 < By(s).
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Response delays vs. sparsity

Assume that ¥ < 8 < 1 and log(y/53) < logp. Then

= e slog?(ep _ s A pt/?)log®(ep
By < 28D g gy g BAED g (e)

Response delay

‘Worst case Average case
:?
=z
....... g c e am e oam
=2
=3
2
g
=
* = Dense * = Dense
- Sparse - Sparse
@ Adaptive @ Adaptive
T T
VP VP
Effective sparsity Effective sparsity
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ocd animation P

Setting: p = 100, z = 900,99 = 5 = 1,y = 5000

1+ 1+
__ gding /Tdn«g _ gdiag /Txh«g
)J _ goftd /anr.d _ goftd /Tolhl
__ goffs /To«.h u _ goffs /Tutr..
100 200 300 400 100 200 300 400

s=3 s =100
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Comparison with other methods 5"

We compare ocd with other recently proposed methods:

» Mei: {1 and {, aggregation of likelihood ratio tests in each coordinate.
(Mei, 2010)

» XS: Use window-based method to aggregate statistics for testing the null
against a normal mixture in each coordinate. (Xie and Siegmund, 2013)

» Chan: Similar to XS, but with an improved choice of tuning parameters.
(Chan, 2017)

Simulation settings: p € {100,2000}, s € {5, | \/p],p}, ¥ € {1,0.5,0.25} and @
generated as YU, where U is uniformly distributed on the union of all s sparse
unit spheres in RP.

» All thresholds are determined using Monte Carlo simulation.
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Comparison with other methods

P s 9 ocd Mei XS Chan
100 5 1 46.9 125.9 47.3 42.0
100 5 0.5 174.8 383.1 194.3 163.7
100 5 0.25 | 583.5 970.4 2147 1888.8
100 10 1 53.8 150.1 52.9 51.5
100 10 0.5 194.4 458.2 255.8 245.6
100 10 0.25 629.7 1171.3  2730.7 2484.9
100 100 1 74.4 268.3 89.6 102.1
100 100 0.5 287.9 834.9 526.8 756.0
100 100 0.25 | 1005.8 1912.9 3598.3 3406.6

2000 5 1 67.3 316.7 79.5 59.5

2000 5 0.5 247.3 680.2 607.7 285.0
2000 5 0.25 851.3 1384.8  4459.2  3856.9
2000 44 1 136.0 596.1 149.1 145.0
2000 44 0.5 479.1 1270.8 2945.5 2751.4
2000 44 0.25 | 1584.2 2428.8 4457.8 5049.7
2000 2000 1 360.7  2126.5 1020.0 2074.7
2000 2000 0.5 | 1296.0 3428.1 4669.3 4672.7
2000 2000 0.25 | 3436.7 4140.4 5063.7 5233.5

Table: Estimated response delay for ocd, Mei, XS and Chan over 200 repetitions, with
z = 0 and v = 5000.

Online changepoint detection
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Summary P

» We propose a new, multiscale method for high-dimensional online
changepoint detection.

» We perform likelihood ratio tests against simple alternatives of different
scales in each coordinate, and aggregate these statistics.

» R package ocd is available on CRAN.
Main reference

» Chen, Y., Wang, T. and Samworth, R. J. (2021) High-dimensional, multiscale
online changepoint detection. J. Roy. Statist. Soc., Ser. B, to appear.
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