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The Problem

Formulation

Function Spaces: E ,S : Rd − valued over domain D ⊂ Rq

Input-Output Map: Ψ† : E → S

Data: {en, sn}Nn=1, sn ≈ Ψ†(en), en
i.i.d.∼ µ,

Goal: Supervised Learning in Banach Space

Parameter Space Θ ⊆ Rp

Operator Class: Ψ : E ×Θ → S

Operator Approximation: Ψ(· ; θ⋆) ≈ Ψ†



Principal Components Analysis: PCA-NET

Architecture Bhattacharya, Hosseini, Kovachki and AMS ’21 [2]

ΨPCA(e; θ)(z) =
m∑
j=1

αj (Le; θ)ψj (z), ∀e ∈ E z ∈ D.

Details
▶ L maps e to its PCA coefficients under µ.

▶ {ψj} are PCA basis functions under (Ψ†)♯µ.

▶ {αj} are finite dimensional neural networks.



Neural Operator: NOP-NET

Architecture Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, AMS and Anandkumar et al ’20 [10]

ΨNOP(e; θ)(z) = Qθ ◦ LL ◦ · · · L2 ◦ L1 ◦ Rθ(e)(z), ∀e ∈ E, z ∈ D,

Ll (v)(z; θ) = σ
(
WlPv(z) + bl1(z) + (Kl,θ(Pv)(z)

)
.

Details
▶ σ activation function, applied pointwise (Nemitskii operator).

▶ Qθ,Rθ pointwise NNs or linear transformations.

▶ Wl , bl define pointwise affine transformations.

▶ Kl,θ integral operator (convolution: FFT).



Recurrent Neural Operator: RNO-NET. D = (0,T )

Architecture Bhattacharya, Liu, AMS, Trautner ’22 [3]

ΨRNO(e; θ)(t) = F
(
e(t),

de

dt
(t), r(t); θ

)
, ∀e ∈ E t ∈ [0,T ],

dr

dt
= G(r , e; θ), ∀e ∈ E t ∈ (0,T ], r(0) = 0.

Details
▶ F ,G neural networks;

▶ Two-layer used in this talk.



Universal Approximation

Theorems

For every ϵ > 0 there is choice of parameters θ such that

▶ PCA-NET [2] Edata∥Ψ(·; θ)−Ψ†∥2
L2µ(E;S)

< ϵ.

▶ NOP-NET [8] supx∈compact ∥Ψ(x ; θ)−Ψ†(x)∥S < ϵ.

▶ These theorems:

Bhattacharya, Hosseini, Kovachki and AMS ’21 [2],

Kovachki, Li, Liu, Azizzadenesheli, Bhattacharya, AMS and Anandkumar ’21 [8];

▶ DEEP-ONET:

Lanthaler, Mishra and Karniadakis ’21 [9];

▶ Curse of dimensionality:

Lanthaler, Mishra and Karniadakis ’21 [9],

Kovachki, Lanthaler and Mishra ’21 [7];

▶ Two-layer neural networks on Banach space:

Korolev ’21 [6];

▶ RNO-NET – this talk.
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Big Picture

Multiscale Problem Gonzalez and AMS ’08 [5]

Displacement uϵ(x , t), stress σϵ(x , t), 0 < ϵ ≪ 1 :

ρ ∂2
t u

ϵ = ∇ · (σϵ) + f ,

σϵ = Ψϵ
(
{∇uϵ}, x

ϵ

)

Homogenized Problem Bensoussan, Lions, Papanicolaou [1]

Approximate uϵ = u0 + ϵu1 + ϵ2u2 + . . .

Determine map Ψ, so that small scales are removed in u0:

ρ ∂2
t u0 = ∇ · (σ) + f ,

σ = Ψ({∇u0}).

Operator Learning

Approximate Ψ ≈ ΨNN
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Multiscale Problem

Elasticity Multiscale Problem

−∇ · (Aϵ∇uϵ) = f , x ∈ Ω

uϵ = 0, x ∈ ∂Ω

Aϵ(x) = A
(x
ϵ

)
, A : Td → Rd×d

Homogenization

Seek uϵ = u0 + ϵu1 + ϵ2u2 + . . . and determine A0 such that

−∇ · (A0∇u0) = f , x ∈ Ω

u0 = 0, x ∈ ∂Ω



Operator Learning

Constitutive Model Bensoussan, Lions, Papanicolaou ’78 [1], Pavliotis and AMS ’08 [12][Ch12]

A0 determined by χ : Td → Rd

−∇y · (∇yχAT ) = ∇y · AT , y ∈ Td ,

A0 =

∫
Td

(
A(y) + A(y)∇χ(y)T

)
dy

Goal: Supervised Learning (NEU-NET)

Learn map F : A(·) → A0 from function on torus to coefficient tensor:

A0 = F (A)

such that

−∇ · (F (A)∇u0) = f , x ∈ Ω,

u0 = f , x ∈ ∂Ω
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Multiscale Problem I Francfort and Suquet ’86 [4]

Viscoelasticity Multiscale Problem

−∇ · (σϵ) = f , x ∈ Ω

uϵ = 0, x ∈ ∂Ω

uϵ|t=0 = ui , x ∈ Ω

σϵ = νϵ∂t∇uϵ + E ϵ∇uϵ

E ϵ(x) = E
(x
ϵ

)
, E : Td → R, νϵ(x) = ν

(x
ϵ

)
, ν : Td → R.

Laplace Transform

Let Aϵ = sνϵ + E ϵ, then

−∇ ·
(
Aϵ (∇ûϵ

))
= f̂ , x ∈ Ω,

uϵ = 0, x ∈ ∂Ω.



Multiscale Problem II Bhattacharya, Liu, AMS, Trautner ’22 [3]

Theorem (Piecewise-Constant Approximation)

Approximating E ϵ, νϵ in L∞(Ω) by piecewise constants E ϵ
PC , ν

ϵ
PC gives

sup
0≤t≤T

∥uϵ − uϵ
PC∥H1

0
≤ C

(
∥E − EPC∥L∞ + ∥ν − νPC∥L∞

)
.

Theorem (Piecewise-Constant Homogenization)

In piecewise-constant case homogenized equation for u0 is Markovian:

−∇ · (σ) = f , x ∈ Ω,

u0 = 0, x ∈ ∂Ω

u0|t=0 = ui , x ∈ Ω

σ = ν′∂t∇u0 + E ′∇u0 + ⟨1, r⟩
∂trℓ = −αℓrℓ + βℓ∇u0, ℓ ∈ {1, 2, · · · , L},

for some choice of E ′ ∈ R+, ν
′ ∈ R+, α ∈ RL

+, β ∈ RL, L ∈ Z+.



Operator Learning

True Solution Map

Let Ψ : {∇u0(τ)}tτ=0 → σ|τ=t be the map such that the homogenized
constitutive relation is

σ = Ψ({∇u0}).

Goal: Supervised Learning (RNO-NET)

Learn map ΨRNO : {∇u0(τ)}tτ=0 → σ|τ=t approximating Ψ with the form

σ = F (∇u0, ∂t∇u0, r)

∂tr = G(r ,∇u0), r(0) = 0.



Effect of Resolution on Test Error

Figure: Viscoelasticity: Old architecture includes the strain rate as an
input while new architecture does not include the strain rate



Effect of Different L on Test Error

Figure: Viscoelasticity: Test error vs. L, the number of constant pieces
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Multiscale Problem 1 Liu, Kovachki, Li, Azizzadenesheli, Anandkumar, AMS, Bhattacharya ’22 [11]

Plasticity Multiscale Problem

ρ ∂2
t u

ϵ = ∇ · σϵ + f , x ∈ Ω

∂tξ
ϵ = K(ξϵ,∇uϵ), x ∈ Ω

σϵ = Ψϵ
(
∇uϵ, ξϵ,

x

ϵ

)
uϵ|t=0 = ui , ∂tu

ϵ|t=0 = νi , ξϵ|t=0 = ξi , x ∈ Ω

uϵ = u∗ x ∈ ∂1Ω, σϵn = s∗ x ∈ ∂2Ω



Multiscale Problem 2

Homogenized Plasticity Problem

ρ ∂2
t u0 = ∇ · σ0 + f , x ∈ Ω

σ0 = Ψ
(
{∇u0}

)
u0|t=0 = ui , ∂tu0|t=0 = νi , x ∈ Ω

u0 = u∗ x ∈ ∂1Ω, σ0n = s∗ x ∈ ∂2Ω



Operator Learning

Goal: Supervised Learning (PCA-NET)

Learn map ΨPCA : {∇u0(τ)}tτ=0 → {σ(τ)}tτ=0 approximating Ψ. In particular
causality must be learned.

Goal: Supervised Learning (RNO-NET)

Learn map ΨRNO : {∇u0(τ)}tτ=0 → σ|τ=t approximating Ψ with the form

σ = F (∇u0, ∂t∇u0, r)

∂tr = G(r ,∇u0), r(0) = 0.



PCA-net: 2D FFT

Figure: Crystal plasticity PCA-net



RNO-net 2D FFT

Figure: Crystal plasticity with dt = 0.01, 400 data
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Conclusions

▶ Supervised learning in Banach space valuable for:
▶ Surrogate Modeling
▶ Model Discovery

▶ Various homogenization problems can be framed this way
▶ Learning constitutive models can hence be framed this way

▶ Elasticity (material properties to stress)
▶ Viscoelasticity (history of strain to stress)
▶ Plasticity (history of strain to stress)

▶ Mesh-independence useful to validate model-form hypothesis
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