Peter Friz, TU and WIAS Berlin

New perspectives on (rough paths,) signatures and signature cumulants ATI, May 6, 2021

Joint work with P. Hager, N. Tapia (both WIAS)

Let $X:[0, T] \rightarrow \mathbf{R}^{d}$, smooth, indefinite signature of X given by

$$
S_{t}=\operatorname{Sig}(X)_{t}=\left(1, \int_{0}^{t} d X, \int_{0}^{t} \int_{0}^{s} d X \star d X, \ldots\right) \in \mathbf{R} \oplus \mathbf{R}^{d} \oplus\left(\mathbf{R}^{d}\right)^{\otimes 2} \oplus \ldots=: T\left(\left(\mathbf{R}^{d}\right)\right)
$$

satifies linear differential equations in $\mathcal{T}=\left(T\left(\left(\mathbf{R}^{d}\right)\right),+, \star\right)$, with tensor (concatenation) product,

$$
d S_{t}=S_{t} \star d X_{t}, \quad S_{0}=\mathbf{1}=(1,0,0, \ldots) \in \mathcal{T}_{1}
$$

Power series calculus! In particular: $\exp _{\star}: \mathcal{T}_{0} \rightarrow \mathcal{T}_{1}$ with inverse $\log _{\star}: \mathcal{T}_{1} \rightarrow \mathcal{T}_{0}$

Log-signature of X given by

$$
L_{t}:=\log S_{t}=\ldots=\left(0, \int_{0}^{t} d X, \frac{1}{2} \int_{0}^{t} \int_{0}^{s}[d X, d X], \ldots\right) \in \mathcal{T}_{0} \cong \mathbf{R}^{d} \oplus\left(\mathbf{R}^{d}\right)^{\otimes 2} \oplus \ldots
$$

Differential evolution: with $S_{t}=\exp \left(L_{t}\right)$

$$
d S_{t}=S_{t} d X_{t} \quad \Leftrightarrow \quad e^{-L_{t}} \partial_{t} e^{L_{t}}=\dot{X}_{t}
$$

Rmk: In commutative setting have $\dot{L}=e^{-L_{t}} \partial_{t} e^{L_{t}}$, conclude $L_{t}=\int_{0}^{t} d X \quad \Leftrightarrow \quad S_{t}=e^{\int_{0}^{t} d X}$.

Theorem (Hausdorff 1906) For explicitly computable $G(z)=1+g_{1} z+g_{2} z^{2}+\ldots$ have

$$
\dot{X}_{t}=e^{-L_{t}} \partial_{t} e^{L_{t}}=G\left(\operatorname{ad} L_{t}\right) \dot{L_{t}}:=\dot{L}+g_{1}[L, \dot{L}]+g_{2}[L,[L, \dot{L}]]+\cdots
$$

Proof: Classical, in this setting see e.g. F-Victoir CUP '10
With $H(z):=1 / G(z)=1+h_{1} z+h_{2} z^{2}+\cdots\left[\right.$ with $h_{j}=B_{j} / j!$ Bernoulli numbers, $\left.B_{1}=-1 / 2\right]$

$$
\dot{L}=H(\operatorname{ad} L) \dot{X}=\dot{X}+h_{1}[L, \dot{X}]+h_{2}[L,[L, \dot{X}]]+\cdots
$$

Computing L by recursion (a.k.a. Magnus expansion). Follows from

$$
L=\left(0, L^{1}, L^{2}, \ldots\right) \in \mathcal{T}^{\geqslant 1}, \quad X \equiv(0, X, 0,0, \ldots) \in \mathcal{T}^{=1}
$$

and

$$
\dot{L}=H(\operatorname{ad} L) \dot{X}=\dot{X}+h_{1}[L, \dot{X}]+h_{2}[L,[L, \dot{X}]]+\cdots
$$

Explicit: $L_{t}^{1}=\int_{0}^{t} d X, L_{t}^{2}=-\frac{1}{2} \int_{0}^{t} \int_{0}^{s}\left[d X_{r}, d X_{s}\right] \ldots$ and with general term (e.g. Wiki)

$$
L_{t}^{n}=\sum_{k=1}^{n-1} \frac{B_{k}}{k!} \sum_{|\ell|=k,\|\ell\|=n-1,} \int_{0}^{t} \operatorname{ad}_{L_{s}^{l_{1}}} \circ \ldots \circ \operatorname{ad}_{L_{s}^{l_{k}}} d X_{s}, \quad \ell=\left(l_{1}, \ldots, l_{k}\right), l_{i} \geq 1,|\ell|=k,\|\ell\|=l_{1}+\ldots+l_{k}
$$

Why good idea?

respect geometry: $e^{L}=e^{\sum L^{i}} \approx e^{L^{1}+\cdots+L^{N}}$ still grouplike
sparsity: e.g. $v=(0, v, 0,0, \ldots) \in \mathcal{T}=1$ vs. $\quad e_{\star}^{v}=\left(1, v, v^{2} / 2, v^{3} / 3!, \ldots\right) \in \mathcal{T}^{\prime \prime}$ full"
"ultimate simplification, new insight, and superior computational algorithms" [A. Iserles]
www.ams.org , notices , fea-iserles-Diese Seite übersetzen
Expansions That Grow on Trees - American Mathematical ..
Expansions That Grow on Trees. Arieh Iserles. 430. NOTICES OF THE AMS. VOLUME 49,
NUMBER 4. Linear Ordinary Differential Equations. How to solve ...
von A Iserles - 2002 - Zitiert von: 53 - Ähnliche Artikel
arxiv.org > math-ph v Diese Seite übersetzen
The Magnus expansion and some of its applications
30.10.2008 - When formulated in operator or matrix form, the Magnus expansion furnishes an elegant setting to built up approximate exponential ...
von S Blanes - 2008 - Zitiert von: 876 - Ähnliche Artikel

Part II

Diamonds. Filtered P -space, all martingales continuous, A_{T} a \mathcal{F}_{T}-measurable r.v.

$$
X_{t}:=\log \mathbf{E}_{t} e^{A_{T}}\left(\text { note }: X_{T}=A_{T}\right)
$$

Gatheral and coworkers, 2017/2020: (formal) diamond expansion

$$
\mathbf{E}_{t} e^{z X_{T}}=e^{z X_{t}+\frac{1}{2} z(z-1)(X \diamond X)_{t}(T)+\sum_{n \geqslant 2} \mathbb{F}_{t}^{n}(z ; T)}
$$

Def: For semimartingales X, X^{\prime} on $[0, T]$, with $\left\langle X, X^{\prime}\right\rangle_{T} \in L^{1}$, diamond product given by

$$
\left(X \diamond X^{\prime}\right)_{t}(T):=\mathbf{E}_{t}\left\langle X, X^{\prime}\right\rangle_{t, T}=\mathbf{E}_{t}\left\langle X, X^{\prime}\right\rangle_{T}-\left\langle X, X^{\prime}\right\rangle_{t}
$$

Note: $\log \mathrm{E}_{t} e^{z X_{T}}=$: (conditional) cumulant generating function
where terms $\mathbb{F}_{t}^{n}(z ; T)$ satisfies a recursion.
[F-Gatheral-Radoicic 2020]. Define $Y_{t}:=\mathbf{E}_{t} A_{T} \quad$ (note: $Y_{T}=A_{T}$).
Thm: Under natural integrability assumptions, for a, b small enough

$$
\mathbf{E}_{t} e^{a Y_{T}+b\langle Y\rangle_{T}}=e^{a Y_{t}+b\langle Y\rangle_{t}+\sum_{n \geqslant 2} \mathbb{G}_{t}^{n}(a, b ; T)}
$$

with $\mathbb{G}^{2}=\left(\frac{1}{2} a^{2}+b\right)(Y \diamond Y)$ and recursion $\mathbb{G}^{n}=\frac{1}{2} \sum_{i=2}^{n-2} \mathbb{G}^{n-i} \diamond \mathbb{G}^{i}+a Y \diamond \mathbb{G}^{n-1}$
Special cases: (i) $\frac{1}{2} a^{2}+b=0$ (exponential martingale case) \Rightarrow corrector \mathbb{G} vanishes
(ii) $b+a / 2=0$, (rigorous) form of Alos et al. expansion (2017)
(iii) $b=0$, Lacoin-Rohdes-Vargas (2019)

Many applications! (Bessel identities, Levy's area formula, rough forward variance models...)

Proof (Sketch): For generic (continuous) semimartingale Z, sufficiently integrable, set

$$
\Lambda_{t}^{T}:=\log \mathbf{E}_{t} e^{Z_{t, T}} \quad \Leftrightarrow \quad \mathbf{E}_{t} e^{Z_{T}}=: e^{Z_{t}+\Lambda_{t}^{T}}
$$

Trivially, the r.h.s is a martingale and from Ito's formula

$$
\rightsquigarrow \quad \Lambda_{t}^{T}=\mathbf{E}_{t}\left(Z_{t, T}+\frac{1}{2}\left\langle Z+\Lambda^{T}\right\rangle_{t, T}\right)=\mathbf{E}_{t} Z_{t, T}+\frac{1}{2}\left(Z+\Lambda^{T}\right)_{t}^{\diamond 2}(T)
$$

Fix a, b. Apply to $Z(\lambda)=\lambda a Y_{T}+\lambda^{2} b\langle Y\rangle_{T}$. Note analyticity of $\lambda \mapsto \Lambda_{t}^{T}(\lambda)$ near 0 , matching powers of λ leads to stated recursion.

Markovian perspective on diamond expansion

X... Markov diffusion with generator L. Recall (Feynman-Kac)
$h(t, x):=\mathbf{E}^{t, x} e^{\lambda\left(\varphi\left(X_{T}\right)+\int_{t}^{T} \xi\left(s, X_{s}\right) d s\right)}$, satisfies $\left(-\partial_{t}-L\right) h=\lambda h \xi, \quad h(T, \cdot)=e^{\lambda \varphi}$.
Cole-Hopf $h \equiv e^{\lambda v}$: With carre du champ operator, $2 \Gamma(f):=L\left(f^{2}\right)-2 f L f$

$$
L(\psi(f))=\psi^{\prime}(f) L f+\psi^{\prime \prime}(f) \Gamma(f), \quad L\left(e^{\lambda v}\right)=e^{\lambda v}\left(\lambda L v+\lambda^{2} \Gamma(v)\right)
$$

Obtain a HJB equation with small (\rightsquigarrow perturbative expansion) quadratic non-linearity

$$
\left(-\partial_{t}-L\right) v=\lambda \Gamma(v)+\xi \quad v(T, \cdot)=\varphi
$$

Example ("KPZ with smooth noise") $L=\partial_{x}^{2}$. Then $\Gamma(f):=\left|\partial_{x} f\right|^{2}$.

Perturbative expansion of $\lambda v=\log h$ leads to ("Wild expansion", as in Hairer's KPZ paper)

$$
\begin{aligned}
\lambda v & =\lambda v(t, x)=\lambda u^{\bullet}+\lambda^{2} u^{\boldsymbol{V}}+\lambda^{3} 2 u^{\boldsymbol{V}^{2}}+\lambda^{4}\left(u^{\boldsymbol{V}}+4 u \boldsymbol{母}^{`}\right)+\cdots \\
& =\sum_{|\tau| \geqslant 1} \lambda^{|\tau|} u^{\tau}=\sum_{n \geqslant 1} \lambda^{n} \sum_{\tau:|\tau|=n} u^{\tau}=: \sum_{n \geqslant 1} \lambda^{n} \mathbb{K}^{n}
\end{aligned}
$$

Since every (binary) tree τ with $|\tau|=n+1$ leaves is of form $\tau=\left[\tau_{1}, \tau_{2}\right]$, we deduce with middle summation below over all trees τ_{1}, τ_{2} with $\left|\tau_{1}\right|+\left|\tau_{2}\right|=n+1$,

$$
\mathbb{K}^{n+1}=\sum_{\tau:|\tau|=n+1} u^{\tau}=\sum_{\ldots} u^{\left[\tau_{1}, \tau_{2}\right]}=\ldots .=\frac{1}{2} \sum_{i=1}^{n} \mathbb{K}^{i} \diamond \mathbb{K}^{n+1-i}
$$

which is the special case $b=0$ of the diamond expansion.
Message: Cumulants in Markovian setting described by HJB / KPZ type PDEs.

PS: Gaussian perspective on diamond expansion: consistent with Nourdin-Peccati (JFA '10)

Expected signatures (T. Lyons and many)

$X:[0, T] \rightarrow \mathbf{R}^{d} \ldots$ (sufficiently integrable) continuous semimartingale Stratonovich indefinite signature of X given by

$$
d S=S \circ d X, \quad S_{0}=\mathbf{1}=(1,0,0, \ldots) \in \mathcal{T}
$$

Expected signature given by $\boldsymbol{\mu}_{T}:=\mathbf{E} S_{T} \in \mathcal{T}$
Bonnier-Oberhauser '19 study signature cumulants

$$
\boldsymbol{\kappa}_{T}:=\log _{\star} \boldsymbol{\mu}_{T} \quad \Leftrightarrow \quad \boldsymbol{\mu}_{T}=\exp _{\star} \boldsymbol{\kappa}_{T}
$$

NB: we are back in $\left(T\left(\left(\mathbf{R}^{d}\right)\right),+, \star\right)=\mathcal{T}$ [and drop again \star^{\star} 's in what follows]

Example (Time-inhomogenous Brownian motion). Let $d X_{t}=\sigma(t) d B_{t}$. Then

$$
d S_{t}=S_{t} \circ d X_{t}=(\ldots) d X+\frac{1}{2} S_{t} d\langle X, X\rangle_{t}=(\ldots) d B+S_{t} a(t) d t
$$

with covariance matrix of X_{t} given by $a(t)=\sigma \sigma^{T}(t) / 2$. With $\boldsymbol{\mu}_{t}:=\mathbf{E} S_{t} \in \mathcal{T}$ as before, get

$$
d \boldsymbol{\mu}_{t}=\boldsymbol{\mu}_{t} a(t) d t
$$

This is a linear ODE in \mathcal{T}, with $a(t) \equiv(0,0, a(t), 0,0, \ldots) \in \mathcal{T}^{=2}$.
We then get the following Magnus expansion for signature cumulants

$$
\boldsymbol{\kappa}_{T}:=\log _{\star} \boldsymbol{\mu}_{T}=\left(\int_{0}^{T} a(t) d t-\frac{1}{2} \int_{0}^{T}\left[\int_{0}^{t} a(s) d s, a(t) d t\right]+\cdots\right)
$$

Example (cont'd). Assume $a(t) \equiv \frac{1}{2}$ Id i.e. X is standard Brownian motion in \mathbf{R}^{d} Then all commutators vanish and we recover Fawcett's formula

$$
\boldsymbol{\kappa}_{T}(X)=\frac{T}{2} \times \mathrm{Id} \quad \Leftrightarrow \quad \operatorname{ESig}(B)_{T}=\exp _{\star}\left(\frac{T}{2} \times \operatorname{Id}\right)
$$

The unified functional equation

$Z:[0, T] \rightarrow \mathbf{R}^{d} \ldots$ (sufficiently integrable) continuous semimartingale. Recall $(d=1)$:
$\Lambda_{t}^{T}=\log \mathbf{E}_{t} e^{Z_{t, T}}=\mathbf{E}_{t}\left(Z_{t, T}+\frac{1}{2}\left\langle Z+\Lambda^{T}\right\rangle_{t, T}\right)=\mathbf{E}_{t}\left(Z_{t, T}+\frac{1}{2}\langle Z\rangle_{t, T}+\left\langle Z, \Lambda^{T}\right\rangle_{t, T}+\frac{1}{2}\left\langle\Lambda^{T}\right\rangle_{t, T}\right)$
Thm [F-Hager-Tapia '20] With $\boldsymbol{\kappa}_{t}:=\boldsymbol{\kappa}_{t}^{T}:=\log \mathbf{E}_{t} \operatorname{Sig}\left(\left.Z\right|_{[t, T]}\right)$ we have

$$
\boldsymbol{\kappa}_{t}^{T}=\mathbf{E}_{t}\left(Z_{t, T}+\frac{1}{2}\langle Z\rangle_{t, T}+\left\langle Z, \boldsymbol{\kappa}^{T}\right\rangle_{t, T}+\frac{1}{2}\left\langle\boldsymbol{\kappa}^{T}\right\rangle_{t, T}+(\star)\right)
$$

$(\star)=\int_{t}^{T}(G-\mathrm{Id})\left(\operatorname{ad}_{\boldsymbol{\kappa}}\right) d \boldsymbol{\kappa}+\int_{t}^{T} \operatorname{Id} \odot(G-\mathrm{Id})\left(\operatorname{ad}_{\boldsymbol{\kappa}}\right) d \llbracket Z, \boldsymbol{\kappa} \rrbracket+\frac{1}{2} \int_{t}^{T}\left(Q-\operatorname{Id}^{\odot} 2\right)\left(\operatorname{ad}_{\boldsymbol{\kappa}}\right) d \llbracket \boldsymbol{\kappa}, \boldsymbol{\kappa} \rrbracket$
with e.g. $\left\langle Z^{i}, \boldsymbol{\kappa}^{j k}\right\rangle \mathfrak{e}_{i j k} \in \mathcal{T}=3$, but $\llbracket \boldsymbol{\kappa}^{i j}, \boldsymbol{\kappa}^{k l m} \rrbracket \mathfrak{e}_{i j} \tilde{\otimes} \mathfrak{e}_{k l m} \in \mathcal{T}=2 \tilde{\otimes} \mathcal{T}=3$, and

$$
G\left(\mathrm{ad}_{x}\right)=\sum_{k=0}^{\infty} \frac{\left(\mathrm{ad}_{x}\right)^{k}}{(k+1)!} \quad \text { and } \quad Q\left(\mathrm{ad}_{x}\right)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} 2 \frac{\left(\operatorname{ad}_{x}\right)^{n} \odot\left(\mathrm{ad}_{x}\right)^{m}}{(n+1)!(m)!(n+m+2)} .
$$

Note: $G(0)=\operatorname{Id}, \quad Q(0)=\operatorname{Id} \odot \operatorname{Id}$, with $(f \odot g)(a, b)=f(a) \times f(b)$, for $f, g: \mathcal{T} \rightarrow \mathcal{T}$
Cor 1: For $\hat{\boldsymbol{\kappa}}_{t}^{T}=\operatorname{Sym}\left(\boldsymbol{\kappa}_{t}^{T}\right)$, the (t-conditional) multivariate cumulants of $Z_{t, T}$, we find the "diamond" functional equation, but now in $\operatorname{Sym}\left(\left(\mathbf{R}^{d}\right)\right)=T\left(\left(\mathbf{R}^{d}\right)\right) / \sim$.

$$
\hat{\boldsymbol{\kappa}}_{t}^{T}=\mathbf{E}_{t}\left(Z_{t, T}+\frac{1}{2}\langle Z\rangle_{t, T}+\left\langle Z, \hat{\boldsymbol{\kappa}}^{T}\right\rangle_{t, T}+\frac{1}{2}\left\langle\hat{\boldsymbol{\kappa}}^{T}\right\rangle_{t, T}\right)=\mathbf{E}_{t} Z_{t, T}+\frac{1}{2}\left(Z+\hat{\boldsymbol{\kappa}}^{T}\right)_{t, T}^{\diamond 2}
$$

with diamond product extended to $\operatorname{Sym}\left(\left(\mathbf{R}^{d}\right)\right)$-valued semimartingales.

Cor 2: Apply to $Z(t, w)=X(t)$ for a smooth path $X:[0, T] \rightarrow \mathbf{R}^{d}$.
Can drop all \mathbf{E}_{t} and all brackets, and recover (backward) Magnus, with

$$
\boldsymbol{\kappa}_{t}=Z_{t, T}+\int_{t}^{T}(G-\mathrm{Id})\left(\operatorname{ad}_{\boldsymbol{\kappa}}\right) d \boldsymbol{\kappa} \Rightarrow-\dot{Z}=G\left(\mathrm{ad}_{\boldsymbol{\kappa}}\right) \dot{\boldsymbol{\kappa}} \Leftrightarrow-\dot{\boldsymbol{\kappa}}=H\left(\operatorname{ad}_{\boldsymbol{\kappa}}\right) \dot{Z}
$$

Important remark: Our unified functional equation comes with a natural recursions / expansion, which provides a common generalization of Magnus - and diamond expansions.
Rmk (Exercise): apply general theorem to recover $\boldsymbol{\kappa}_{t}:=\log \operatorname{ESig}\left(\int_{0}^{\sim} \sigma(t) d B_{t}\right)$.

Markovian considerations

Computing $\mathbf{E}_{t}(\ldots)$ is solving a (backward) PDE.
Ni,Lyons ('15) Expected signature $\boldsymbol{\mu}$ of Markov diffusion (at time T), Brownian motion stopped at some $\partial \ldots$

In essence: $\boldsymbol{\mu}=\left(1, \boldsymbol{\mu}^{1}, \boldsymbol{\mu}^{2}, \ldots\right)$ satisfies triangular system of linear PDEs (parabolic resp. elliptic, backward). Solved recursively,

$$
\boldsymbol{\mu}_{t}^{n}=\Phi\left(\boldsymbol{\mu}_{\tau}^{1}, \ldots \boldsymbol{\mu}_{\tau}^{n-1}: t \leqslant \tau \leqslant T\right)
$$

Signature cumulants $\log \boldsymbol{\mu}_{t}=\boldsymbol{\kappa}_{t}$ satisfies system of "non-linear" PDEs of KPZ type in \mathcal{T}

Concluding remarks

So far, very general for continuous semimartingales.
What about general (cadlag) semimartingales? Yes! (F-Hager-Tapia arXiv2021)

- Correct notion of signature? A: Marcus signature (F-Shekhar '15)
- Signature cumulants described by generalized functional relation
- Commutative setting: cumulants of semimartingales with "Ricatti" functional description For classical affine processes: reduction to Riccati ODEs

For "rough" affine processes (Larson, Gatheral ...) reduction to Volterra Riccati DEs

- New perspective on rough paths?

Thank you very much!

