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Optimal execution

Suppose | would like to sell 1 million shares of Apple.
How should | proceed?
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Optimal execution

Suppose | would like to sell 1 million shares of Apple.
How should | proceed?

A naive approach would be to execute all 1 million shares at once.
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Optimal execution

Suppose | would like to sell 1 million shares of Apple.
How should | proceed?

A naive approach would be to execute all 1 million shares at once.
An alternative approach would be to slice the order and execute the shares

over a period of time.
How should | slice the order?
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Optimal execution

e There is a trade-off between fast execution (at a cost of obtaining a bad price)
and slow execution (at a cost of obtaining an uncertain price).

e These trade-offs can be incorporated into an optimal control problem.
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Market impact

Let X : [0,T] — R be a continuous stochastic process that models the
unaffected midprice of the asset.

Assume w.l.0.g. that X, = 1.

Denote by (0;):co.1] the speed of trading; i.e. the speed at which the order is
executed.
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Market impact

e Let X :[0,7] — R be a continuous stochastic process that models the
unaffected midprice of the asset.

e Assume w.l.o.g. that Xy = 1.

e Denote by (Qt)te[o,T] the speed of trading; i.e. the speed at which the order is
executed.

o If | follow (Qt)te[o,T] , the trading activity will have an impact on the price.

e The execution price will be given by

Pte = G = G(<95)se[(),t])
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Market impact: examples
Temporary market impact: G((0s)scpo9) == A0, A >0
Permanent market impact: G((6;)sci0.4) := X [ 6sds, A >0
Transient market impact: G((6;)sc0.q) = A [, e *1%8,ds

etc
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Optimal execution problem
Initial inventory: g3 € R units of stock.
Terminal wealth: Wy := [ P%0,ds.

Running inventory: Q); .= qy — fot 0.ds.
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Optimal execution problem

Value function:

V0 =Wr—¢ [, Q¥dt+Qr(Pi—aQy).
with @, a > 0.
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Optimal execution problem

Value function:

V0= Wr—¢ [ Q¥dt+Qr(Pi—aQr).

with @, a > 0.

Optimal execution problem:

sup
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Solving the optimal execution problem

The space of trading strategies is very large and it may be difficult to optimise
over it.

One approach to follow could be to look for strategies in a restricted (but large)
class of traging strategijs.

0s = f@ t, (Xs)se[(),t]
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Solving the optimal execution problem

The space of trading strategies is very large and it may be difficult to optimise
over it.

One approach to follow could be to look for strategies in a restricted (but large)
class of traging strategijs.

0s = f@ t, (XS)SE[O,t]

Example: neural networks [1].
This class of strategies is very large.

We know how to optimise over this class of trading speeds (i.e. by training the
neural network).

RVEVS
DataSig [1] Leal, L., Lauriére, M. and Lehalle, C.A., 2020. Learning a functional control for
atrematcsandaatascioce high-frequency finance. arXiv: 2006.09611.
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Solving the optimal execution problem

In this talk, we’ll consider a different class of trading strategies instead:
sighature trading strategies.

This class is also very large (it can approximate general trading strategies).
We can efficiently optimise over this class of strategies.
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Notation and assumptions

We denote X; := (¢, X;) € R?, where recall that X is the unaffected midprice.

We assume that )?Acan be lifted to a geometric rough path, whose signature
will be denoted by X <% which takes values in T((R?)).
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Notation and assumptions

We denote X; := (¢, X;) € R?, where recall that X is the unaffected midprice.

We assume that )?Acan be lifted to a geometric rough path, whose signature
will be denoted by X< which takes values in T((R?)).

On the dual space T((R?)*) we make the identification with words
e;‘l@@e:nHllln

and the empty word is denoted by &.

Given two words W, Vdenote by wv their concatenation and by w LI v their
shuffle product.
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Shuffle product

Recall the shuffle product property:

(F X559, X55°)
for all f, g € T((R*)*).
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Signature trading speeds

We define the space of signature trading strategies:

Toig = {t = (0,X5°) £ € T((R?)")}.

to v
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Signature trading speeds

We define the space of signature trading strategies:

Toig = {t = (0,X5°) £ € T((R?)")}.

We can approximate general trading strategies by such signature trading
strategies.

We will consider the optimal execution problem over signature trading

strategies:
sup t[VH]
2 ‘ EVEVS 967(—92'9
DataSig
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Market impact

Foreach § € 7.

519

with ¢ € T((R?)*).
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Market impact
Let 0 € (£,X55°), £ € T((RY").

Temporary market impact. Set gZ = Al Then,
€ AN AN
<g ’X(T,I?O> — )‘<€7 X()<77(f>o> — )\Gt
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Market impact
Let 0 € (£,X55°), £ € T((RY").
Temporary market impact. Set gZ = Al Then,
(9" K55°) = MOK55) = A
Permanent market impact. Set gé -— \1. Then,

S
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Solving the optimal execution problem

Let 0; = (¢, X&ﬁ be a signature trading strategy. We have:

Wf —
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Solving the optimal execution problem

Let 0; = (¢, X&ﬁ be a signature trading strategy. We have:

t AN
Wi = / PL(, X5 %Vds
O Y

Flred
DataSi

A rough path between
s and data science

The |
Alan Turi Imperial Colle
B e oo gem 22

24



Solving the optimal execution problem

Let 0; = (¢, Xéﬁ be a signature trading strategy. We have:
t
Wi = / PL(, X5 %Vds
O Y

t ~
— /(; (XS _ <g€7XO,S >)<€ X >d
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Solving the optimal execution problem

Let 0; = (¢, X&ﬁ be a signature trading strategy. We have:

t AN
Wi = / PL(, X5 %Vds
O Y
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Solving the optimal execution problem

Let 0; = (¢, X&ﬂ be a signature trading strategy. We have:

t AN
Wi = / PL0, X5V ds
O Y

t AN
:/o (242 —g¢") U, X&ff}ds
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Solving the optimal execution problem

Let 0; = (¢, X&ﬂ be a signature trading strategy. We have:

t AN
Wi = / PL0, X5V ds
O Y

t AN
:/o (242 —g¢") U, X&ff}ds
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Solving the optimal execution problem

/4 v <
Wi={ — X017

" ) W

depen?drs only
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component X
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Solving the optimal execution problem

depends only
on the control

g ) W

¢ depens on the stochastic
component X
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Solving the optimal execution problem

The original problem is written as:

sup (((2 +2—g¢Uu 8) 1 — (o2 — £1)Y%(¢$1 — a@)
LeT((R?)*)

+Hgo2 - 1)U (2+2 - ¢),E |X5F|)

e
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Solving the optimal execution problem

For a fixed signature degree N, we have to solve:

sup <((z +o— gL e) 1— (902 — £1)“%($1 — o)
(T (R2)")

+Hqo2 — (1)U (2+ 2 — g).E |X55°))
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Numerical experiments

We carry out different experiments for different midprice models.

In each experiment, we:
Estimate the expected signature with Monte Carlo by sampling 50,000
realisations of the midprice process.
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Numerical experiments

We carry out different experiments for different midprice models.

In each experiment, we:
Estimate the expected signature with Monte Carlo by sampling 50,000
realisations of the midprice process.
We solve the signature optimisation problem.
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Numerical experiments

We carry out different experiments for different midprice models.

In each experiment, we:
Estimate the expected signature with Monte Carlo by sampling 50,000
realisations of the midprice process.
We solve the signature optimisation problem.
We evaluate the performance of the signature strategy on 10,000 new samples.
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Numerical experiments

We carry out different experiments for different midprice models.

In each experiment, we:
Estimate the expected signature with Monte Carlo by sampling 50,000
realisations of the midprice process.
We solve the signature optimisation problem.

We evaluate the performance of the signature strategy on 10,000 new samples.

If available, we compare the performance of the signature strategy with the
performance of the known closed-form solution of the problem.
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Numerical experiments

We carry out different experiments for different midprice models.

In each experiment, we:

Estimate the expected signature with Monte Carlo by sampling 50,000
realisations of the midprice process.
We solve the signature optimisation problem.

We evaluate the performance of the signature strategy on 10,000 new samples.

If available, we compare the performance of the signature strategy with the
performance of the known closed-form solution of the problem.

In all cases, we use the time-weighted average price (TWAP) strategy as a
benchmark.
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Numerical experiment I: incorporating order flow

In (Cartea and Jaimungal, 2016) the authors incorporate the order-flow into the

midprice dynamics.

The midprice is given by
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Numerical experiment I: incorporating order flow

In (Cartea and Jaimungal, 2016) the authors incorporate the order-flow into the
midprice dynamics.

The midprice is given by

t
Xy ;:k/ (,u;_—,us_)dS—I—O'Wt
0

)

buy orders sell orders
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Numerical experiment I: incorporating order flow

We include temporary and permanent market impacts.

Signatures of order 7 are considered.
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Numerical experiment |l: incorporating order flow
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Numerical experiment |l: incorporating order flow

Theoretical optimal speed

0.995748 + 2.12x10°
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0.995697 + 3.97x107°

TWAP

0.993516 + 6.07x10°
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Numerical experiment Il: incorporating trading signals

In (Lehalle and Neuman, 2017) the authors include trading signals the investor
has access to, such as order imbalance. The signals predict short-term price

movements.

They model the midprice by

t
0
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Numerical experiment Il: incorporating trading signals

In (Lehalle and Neuman, 2017) the authors include trading signals the investor
has access to, such as order imbalance. The signals predict short-term price

movements.

They model the midprice by

t
0
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Numerical experiment Il: incorporating trading signals

A temporary market impact is included.

Signatures of order 9 are considered.
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Numerical experiment Il: incorporating trading signals
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Numerical experiment Il. incorporating trading signals

Theoretical optimal speed

1.0170735 + 4.05%10°
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1.0169903 + 4.12x10°

TWAP

0.999856 + 2.21x107°
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Numerical experiment lll: fractional Brownian motion

The midprice process is given by

Xt = O'WtH
where H is the Hurst parameter.

We consider the rough case: H < 7-.
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Numerical experiment lll: fractional Brownian motion

The midprice process is given by

Xt = O'WtH
where H is the Hurst parameter.
We consider the rough (H < %2) and smooth (H > %) case.

Signatures of order 7 are considered.

We include a temporary market impact.
‘ EVEVA
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Numerical experiment lll: fractional Brownian motion
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Numerical experiment lll: fractional Brownian motion
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Numerical experiment Il. incorporating trading signals

H Signature optimal speed | Signature trading speed
1/3 1.0031498 + 1.38x10™ 0.9991785 + 5.72x10™*
0.7 1.0203925 + 2.82x10° 0.99921470 + 1.08x10°
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Numerical experiment IV: double-execution

We want to sell a block of shares in a foreign stock market (e.g. Apple).

The proceeds are exchanged into the investor’'s domestic currency (e.g.
GBP).
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Numerical experiment IV: double-execution

We want to sell a block of shares in a foreign stock market (e.g. Apple).

The proceeds are exchanged into the investor’'s domestic currency (e.g.
GBP).

The foreign stock S' and exchange rate S?follow geometric Brownian motions:
dS} = 1 Sidt + o1 Spdw}
t = M1opat + opopalvy
dS? = ppSidt + 09S7dW?
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Numerical experiment IV: double-execution
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Thank you
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