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where 6 € © are the unknown parameters of the model, 7(0) is an appropriate prior density and y
denotes the dataset.

This raises technical challenges as the normalisation constant

") = [ wlylo)m(o)s
e
is an intractable d-dimensional integral.

Sampling from P via Markov chain Monte Carlo (MCMC) is a popular approach which requires only
evaluation of the un-normalised form

p(0) := m(y|0)m(0),

but it is not a silver bullet.



An ldeal Post-Processing Method

In an ideal world we would be able to post-process the MCMC output and keep only those states that
are representative of the posterior P:
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In an ideal world we would be able to post-process the MCMC output and keep only those states that
are representative of the posterior P:

"3 2 1 o 1 2 3 3 2 1 0o 1 2 3 "3 2 4 o 1 2 3

P MCMC output Representative Subset
(6)=1 (67)ies
Desiderata:

» Fix problems with MCMC (automatic identification of burn-in; mitigation of poor mixing; number
of points proportional to the probability mass in a region; etc.)

» Compressed representation of the posterior, to reduce any downstream computational load.
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Optimal Thinning of MCMC Output

“Pick a representative subset from the MCMC output”

1
Idea: argmin diff | — 6(0:), P
SC{II,H.,n}\(’)/<mI-€ZS 1) )
S|l=m *

Remarks:
» “Nice idea, but we don’t have access to P.”

» “Combinatorial optimisation is a hard problem.”

Our strategy is to use Stein’s Method to manufacture a function (x) that can be computed without
the normalisation constant 7(y).
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Problem: We need to choose k carefully, so that kp and kp p can be evaluated. How?
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Definition (Stein Characterisation)
A distribution P is characterised by the pair (A, F), consisting of a Stein Operator A and a Stein Class

F, if it holds that
9~ P iff E[Af(9)] =0 VfeF.

Example (Stein, 1972)
> P = N(u,o?) with density function p(x)
> A YR
P
> F={f:R—Rst V() € L}(R) and lim,_co F(0)p(0) = limg r1c0 F(0)p(0)}.



Stein Characterisation

Elements of F = B(k) Associated elements of K = AF
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(Going to stick to d = 1.)

Theorem (Chwialkowski et al. [2016])

Suppose that k is bounded, symmetric, cc-universal and satisfies Eyp[(Ak(9,19))?] < oo. Then P has
Stein characterisation (A, F), consisting of

Af — @, F=Bk)={fek:|fllc <1}

Theorem (O, Girolami and Chopin [2017])

The functions Af just defined are precisely the elements of the unit ball in the RKHS Ko := AK with
kernel

ko(@,@l) = Vng/k(@,@l) + [V.g |ng(0)] Vg/k(@,el)
+ [V log p(0') Vo] k(0,6) + [V log p(0)] [V log p(6)] k(6,6").

In particular, under regularity conditions, (ko)p = 0 and (ko)p,p = 0 are trivially computed.

Solution: Use ko in an integral probability metric!
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The kernel Stein discrepancy [KSD; Chwialkowski et al., 2016, Liu et al., 2016] is just the worst-case
integration error for the Stein RKHS KCq:

KSD <;Za(9;),P> = Dio,p ({0ities)
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Computation of the KSD does not require knowledge of the normalisation constant m(y) and so it can
be explicitly computed.

Gorham and Mackey [2017] established that

doud (# Zies 6(6i), ’D) KSD (% Zies 6(0i), P) wass (% Zies 5(65), P)
i) = { = 4
0 0 0

when the KSD is based on k(6,0’) being the inverse-multiquadric kernel. (dp,qg is the Dudley metric and
metrises weak convergence. dyass is the Wasserstein metric, popular from optimal transport.)
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Stein Thinning of MCMC Output

“Greedily pick states 6; from the MCMC output to minimise KSD”

The “Stein Thinning” algorithm that we propose produces a subset S = {i,...,in} C {1,...,n}
consisting of:

i € argmax p(6ily)

ie{1,...,n}
1 m—
im € argmin KSD | — 0(0:), P m>2
i€{1,...,n} m g
m—1 (9 9)
= argmin ko (9,,9,)—1—M
ie{1,...,n} 121: ! 2

This requires searching over a finite set only and can therefore be exactly implemented. The cost of
selecting the mth point is O(mn).



Stein Thinning of MCMC Output

The figures we saw before were actually produced by Stein Thinning!

25
2
2
15
1 1
2 os
0 X
§’ 0
1 05
-1
2
-15
3 3 2
3 2 1 0 1 2 3 3 2 1 0 1 2 3 o 2 4 6
Log Iteration
MCMC output Representative Subset Performance
(9;)7:1 (9,‘),‘55 m+— KSD (% Zies 5(0,),[3)

(log-scales used)

The MCMC need not even be P-invariant; full details in:

» M. Riabiz, W. Y. Chen, J. Cockayne, P. Swietach, S. A. Niederer, L. Mackey and CJO. Optimal
Thinning of MCMC Output. JRSSB, 2022+.



Stein-Thinning.org

Stein Thinning About

Stein Thinning s a tool for post-processing the output of a sampling
procedure, such as Markov chain Monte Carlo (MCMC). It aims to minimise
2 Steln discrepancy, selecting  subsequence of samples that best represent
the distributional target

StelThinnihg

Bias Correction for MCMC

Optimally thinning of output from a
sampling procedure, such as MCMC.
Here the red samples are automatically
chosen by Stein Thinning to provide a
more accurate approximation to the
distributional target, compared with the

original MCMC output. [Read more] [ —— % S

View the Project on GitHub

wilson-ye-chen|sein_thinning_starc The user provides two arrays: one contalning the samples and another
containing the corresponding gradients of the log-target. Stein Thinning
returns a vector of indices, indicating which samples were selected.

In favourable circumstances, Stein Thinning is able to;
« automatically identify and remove the burr-in period from MCMC,
« perform bias-removal for biased sampling procedures,
« provide improved approximations of the distributional target,
« offer a compressed representation of sample-based output.
Installation
Implementations of Stein Thinning are available for Python, R, and MATLAB:
« Install for Python

« InstallforR
« Install for MATLAB.

DA



http://stein-thinning.org/

Non-Myopic and Batch Extensions

However, greedy selection may be sub-optimal. Also, the cost of selecting m points from n using Stein
Thinning is high, at O(m?n).

» A non-myopic algorithm selects s points simultaneously.
» A mini-batch algorithm searches over a subset of b < n candidates at each step.

o

0.1 1 10 100 1000 0 250 500 750 1000
Wall-clock time (seconds) Number of samples collected

1000 — Greedy le5
b=10,5=1
— b=100,5=1
b=100,5=10
— =1000,5=1
b=1000,5=10
— b=1000,5=100

led

100

KSD

10

KSD x elapsed time
&

le2

Full details in:
» O. Teymur, J. Gorham, M. Riabiz, CJO. Optimal Quantisation of Probability Measures Using
Maximum Mean Discrepancy. AISTATS, 2021.
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Some other uses of Stein's method in facilitating Bayesian computation:

Stein Points: Chen et al. [2018, 2019]

Stein Importance Sampling: Liu and Lee [2017], Hodgkinson et al. [2020]
Stein Variational Gradient Descent: Liu and Wang [2016], ...

Control Variates: CJO et al. [2017], South et al. [2022], ...

Variational Inference: Fisher et al. [2021], Matsubara et al. [2022], ...
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Recent advances in Stein discrepancies:

> Diffusion-based Stein Operators: Gorham and Mackey [2015], Gorham et al. [2019]
> Stochastic Stein Discrepancy: Huggins and Mackey [2018], Gorham et al. [2020]
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