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Computation for the Bayesian Framework

The goal is to obtain an approximation to the posterior in a Bayesian context:

P : π(θ|y) =
π(y |θ)π(θ)

π(y)

where θ ∈ Θ are the unknown parameters of the model, π(θ) is an appropriate prior density and y
denotes the dataset.

This raises technical challenges as the normalisation constant

π(y) =

∫
Θ

π(y |θ)π(θ)dθ

is an intractable d-dimensional integral.

Sampling from P via Markov chain Monte Carlo (MCMC) is a popular approach which requires only
evaluation of the un-normalised form

p(θ) := π(y |θ)π(θ),

but it is not a silver bullet.
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An Ideal Post-Processing Method

In an ideal world we would be able to post-process the MCMC output and keep only those states that
are representative of the posterior P:
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Desiderata:

▶ Fix problems with MCMC (automatic identification of burn-in; mitigation of poor mixing; number
of points proportional to the probability mass in a region; etc.)

▶ Compressed representation of the posterior, to reduce any downstream computational load.
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Optimal Thinning of MCMC Output

“Pick a representative subset from the MCMC output”

Idea: argmin
S⊂{1,...,n}

|S|=m

diff︸︷︷︸
(∗)

(
1

m

∑
i∈S

δ(θi ),P

)

Remarks:

▶ “Nice idea, but we don’t have access to P.”

▶ “Combinatorial optimisation is a hard problem.”

Our strategy is to use Stein’s Method to manufacture a function (∗) that can be computed without
the normalisation constant π(y).
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Kernel Stein Discrepancy

Stein Thinning of MCMC Output

Stein’s Method in Computational Statistics



Kernel Stein Discrepancy



Approximation in Reproducing Kernel Hilbert Spaces (RKHS)

Let k : Θ×Θ → R be the reproducing kernel of a RKHS K of functions from Θ to R; i.e ∀θ ∈ Θ,
k(θ, ·) ∈ K and f (θ) = ⟨f , k(θ, ·)⟩K whenever f ∈ K. (Intuition: f (θ) =

∑
i cik(θ, θi ))

Consider an integral probability metric based on ∥ · ∥K:

diff

(
1

m

∑
i∈S

δ(θi ),P

)
:= sup

∥f ∥K≤1

∣∣∣∣∣ 1m∑
i∈S

f (θi )− Eϑ∼P [f (ϑ)]

∣∣∣∣∣
=: DK,P ({θi}i∈S)

which is known as the worst-case integration error for the RKHS K.

Let’s try to compute this:

DK,P({θi}i∈S)
2 =

∥∥∥∥∥ 1

m

∑
i∈S

k(θi , ·)−
∫

k(θ, ·)dP(θ)

∥∥∥∥∥
2

K

where kP :=
∫
k(θ, ·)dP(θ) ∈ K and kP,P :=

∫
kPdP.

Problem: We need to choose k carefully, so that kP and kP,P can be evaluated. How?
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A Brief History of Stein



Stein Characterisation

Definition (Stein Characterisation)

A distribution P is characterised by the pair (A,F), consisting of a Stein Operator A and a Stein Class
F , if it holds that

ϑ ∼ P iff E[Af (ϑ)] = 0 ∀f ∈ F .

Example (Stein, 1972)

▶ P = N(µ, σ2) with density function p(x)

▶ A : f 7→ ∇(fp)
p

▶ F = {f : R → R s.t. ∇(fp) ∈ L1(R) and limx↘−∞ f (θ)p(θ) = limθ↗+∞ f (θ)p(θ)}.
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Stein Characterisation
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Stein Operators in Hilbert Spaces

(Going to stick to d = 1.)

Theorem (Chwialkowski et al. [2016])

Suppose that k is bounded, symmetric, cc-universal and satisfies Eϑ∼P [(∆k(ϑ, ϑ))2] < ∞. Then P has
Stein characterisation (A,F), consisting of

Af =
∇(fp)

p
, F = B(k) := {f ∈ K : ∥f ∥K ≤ 1}.

Theorem (O, Girolami and Chopin [2017])

The functions Af just defined are precisely the elements of the unit ball in the RKHS K0 := AK with
kernel

k0(θ, θ
′) = ∇θ∇θ′k(θ, θ

′) +
∇θp(θ)

p(θ)
∇θ′k(θ, θ

′)

+
∇θ′p(θ

′)

p(θ′)
∇θk(θ, θ

′) +
∇θp(θ)

p(θ)

∇θ′p(θ
′)

p(θ′)
k(θ, θ′).

In particular, under regularity conditions, (k0)P = 0 and (k0)P,P = 0 are trivially computed.

Solution: Use k0 in an integral probability metric!
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Kernel Stein Discrepancy

The kernel Stein discrepancy [KSD; Chwialkowski et al., 2016, Liu et al., 2016] is just the worst-case
integration error for the Stein RKHS K0:

KSD

(
1

m

∑
i∈S

δ(θi ),P

)
:= DK0,P ({θi}i∈S)

=

√
1

m2

∑
i,j∈S

k0(θi , θj)−
2

m

∑
i∈S

����(k0)P(θi ) +���(k0)P,P

Computation of the KSD does not require knowledge of the normalisation constant π(y) and so it can
be explicitly computed.

Gorham and Mackey [2017] established that

dDud

(
1
m

∑
i∈S δ(θi ),P

)
KSD

(
1
m

∑
i∈S δ(θi ),P

)
dWass

(
1
m

∑
i∈S δ(θi ),P

)
↓ ⇐ ↓ ⇐ ↓
0 0 0

when the KSD is based on k(θ, θ′) being the inverse-multiquadric kernel. (dDud is the Dudley metric and

metrises weak convergence. dWass is the Wasserstein metric, popular from optimal transport.)
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Stein Thinning of MCMC Output

“Greedily pick states θi from the MCMC output to minimise KSD”

The “Stein Thinning” algorithm that we propose produces a subset S = {i1, . . . , im} ⊂ {1, . . . , n}
consisting of:

i1 ∈ argmax
i∈{1,...,n}

p(θi |y)

im ∈ argmin
i∈{1,...,n}

KSD

(
1

m

m−1∑
j=1

δ(θij ) +
1

m
δ(θi ),P

)
, m ≥ 2

= argmin
i∈{1,...,n}

m−1∑
j=1

k0(θi , θij ) +
k0(θi , θi )

2

This requires searching over a finite set only and can therefore be exactly implemented. The cost of
selecting the mth point is O(mn).
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Stein Thinning of MCMC Output

The figures we saw before were actually produced by Stein Thinning!
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The MCMC need not even be P-invariant; full details in:

▶ M. Riabiz, W. Y. Chen, J. Cockayne, P. Swietach, S. A. Niederer, L. Mackey and CJO. Optimal
Thinning of MCMC Output. JRSSB, 2022+.



Stein-Thinning.org

Link

http://stein-thinning.org/


Non-Myopic and Batch Extensions

However, greedy selection may be sub-optimal. Also, the cost of selecting m points from n using Stein
Thinning is high, at O(m2n).

▶ A non-myopic algorithm selects s points simultaneously.

▶ A mini-batch algorithm searches over a subset of b ≪ n candidates at each step.

Full details in:

▶ O. Teymur, J. Gorham, M. Riabiz, CJO. Optimal Quantisation of Probability Measures Using
Maximum Mean Discrepancy. AISTATS, 2021.
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Stein’s Method in Computational Statistics

Some other uses of Stein’s method in facilitating Bayesian computation:

▶ Stein Points: Chen et al. [2018, 2019]

▶ Stein Importance Sampling: Liu and Lee [2017], Hodgkinson et al. [2020]

▶ Stein Variational Gradient Descent: Liu and Wang [2016], ...

▶ Control Variates: CJO et al. [2017], South et al. [2022], ...

▶ Variational Inference: Fisher et al. [2021], Matsubara et al. [2022], ...

Recent advances in Stein discrepancies:

▶ Diffusion-based Stein Operators: Gorham and Mackey [2015], Gorham et al. [2019]

▶ Stochastic Stein Discrepancy: Huggins and Mackey [2018], Gorham et al. [2020]
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