
A Mathematical Perspective of Machine Learning

Machine learning from the viewpoint of numerical analysis in high dimension

Weinan E

Princeton University

Joint work with:

Chao Ma, Lei Wu

www.math.princeton.edu/~weinan

June 5, 2020 1 / 62

www.math.princeton.edu/~weinan

Outline

Outline

1 Introduction

2 Generalization error estimates

3 The optimization problem and the gradient descent dynamics

4 Machine learning from a continuous viewpoint

5 Flow-based representation and deep neural network models

6 Summary

June 5, 2020 2 / 62

Introduction

Outline

1 Introduction

2 Generalization error estimates

3 The optimization problem and the gradient descent dynamics

4 Machine learning from a continuous viewpoint

5 Flow-based representation and deep neural network models

6 Summary

June 5, 2020 3 / 62

Introduction

Basic example: Supervised learning

Given S = {(xj, yj = f ∗(xj)), j ∈ [n]}, learn f ∗.

1 This is a problem about function approximation.
2 Based on finite pieces of “labeled” data

regression (f ∗ is continuous) vs classification (f ∗ is discrete)

will neglect measurement noise (not crucial for the talk)

assume xj ∈ X = [0, 1]d. d is typically quite large

notation: µ = the distribution of {xj}

In practice, one divides S into two subsets, a training set and a testing set.

June 5, 2020 4 / 62

Introduction

Classification example: Cifar 10

Input: x ∈ [0, 1]d with
d = 32× 32× 3 = 3072.

Output: f ∗ ∈ {0, 1, . . . , 9}.

June 5, 2020 5 / 62

Introduction

Regression example: Inter-atomic potential

http://www.deepmd.org/database/deeppot-se-data/

V = V (x1,x2, · · · ,xN)

June 5, 2020 6 / 62

Introduction

86 PFLOPS DeePMD simulation of 100M atoms

D. Lu, et al, arXiv: 2004.11658; W. Jia, et al, arXiv: 2005.00223

June 5, 2020 7 / 62

Introduction

Solving PDEs in very high dimensions

HJB equation:
∂u

∂t
−∆u + λ‖∇u‖2

2 = 0, u(·, 0) = g(·)

u(t,x) = −λ−1 ln

(
E
[

exp
(
− λg(x +

√
2Wt)

)])
.

Result of the DeeP BSDE method for d = 100:

0 10 20 30 40 50

lambda

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

u
(0
,0
,.
..
,0
)

Deep BSDE Solver

Monte Carlo

Figure: Left: Relative error of the deep BSDE method for u(t=1,x=(0, . . . , 0)) when λ = 1, which achieves 0.17% in a

runtime of 330 seconds. Right: Optimal cost u(t=1,x=(0, . . . , 0)) against different λ.

June 5, 2020 8 / 62

Introduction

ML in computational science and scientific computing

Attacking problems in high dimensions

1 PDEs and control problems
Control problems in high dimension (Han and E, 2016)

High dimensional nonlinear parabolic PDEs (Han, Jentzen and E, 2017)

Least square methods for PDEs (Sirignano and Spiliopoulos, 2018)

2 Molecular dynamics
Neural network models (Behler and Parrinello, 2007)

Kernel methods (Bartok, Payne, Kondor, Csanyi, 2010)

Deep Potential Molecular Dynamics (DeePMD, Zhang, Han, Wang, Car and E, 2017):

ab initio molecular dynamics with millions of atoms

3 Quantum many-body problem
Schrodinger equation for spins (Carleo and Troyer, 2016)

Schrodinger equation for electrons (Han, Zhang and E, 2018)

DeepMind group (Pfau, Spencer, Matthews and Foulkes, 2019)

4 Multi-scale modeling
Uniformly accurate moment closure models for kinetic equations (Han, Ma, Ma and E, 2019)

Hydrodynamic models for polymer fluids (Lei and E 2020)

June 5, 2020 9 / 62

Introduction

Mathematical perspective

Error analysis (approximation theory): Good solutions do exist.

Analysis of the training algorithm: “Work but subtle”. Why?

Better formulation of the problem: Improve the robustness of the ML procedure

June 5, 2020 10 / 62

Introduction

Standard procedure for supervised learning

Focus on regression problem
1 choose a hypothesis space (set of trial functions) Hm (m ∼ dim(Hm))

(piecewise) polynomials, wavelets, ...

neural network models

2 choose a loss function (to fit the data)
“empirical risk”

R̂n(f) =
1

n

∑
j

(f (xj)− yj)2 =
1

n

∑
j

(f (xj)− f ∗(xj))2

add regularization

3 choose an optimization algorithm and parameters
gradient descent (GD), stochastic gradient descent (SGD), ADAM, RMSprop, ...

hyperparameters (initialization, step size=learning rate, ...)

Objective: Minimize the “population risk” (also known as the “generalization error”)

R(f) = Ex∼µ(f (x)− f ∗(x))2 =

∫
Rd

(f (x)− f ∗(x))2dµ

Important parameters: m,n, t, d (typically interested in the case: m,n, t→∞, d� 1).

June 5, 2020 11 / 62

Introduction

High dimensional integration

I(g) =

∫
X

g(x)dµ, Im(g) =
1

m

∑
j

g(xj)

Grid-based quadrature rules:

I(g)− Im(g) ∼ C(g)

mα/d

Appearance of 1/d in the exponent of m: Curse of dimensionality (CoD)!
If we want m−α/d = 0.1, then m = 10d/α = 10d, if α = 1.

Monte Carlo: X = [0, 1]d, {xj, j ∈ [m]} is uniformly distributed in X .

E(I(g)− Im(g))2 =
var(g)

m
, var(g) =

∫
X

g2(x)dx−
(∫

X

g(x)dx

)2

The O(1/
√
m) rate is (almost) the best we can hope for.

However, var(g) can be very large in high dimension. Variance reduction!

June 5, 2020 12 / 62

Introduction

Approximation and estimation errors

Want to understand f ∗ − f̂ , where f̂ = the output of the ML model.

fm = argmin f∈HmR(f) = “best approx” to f ∗ in Hm.

Decomposition of the error:

f ∗ − f̂ = f ∗ − fm + fm − f̂

f ∗ − fm is the approximation error, due entirely to the choice of the hypothesis space

fm− f̂ is the estimation error — additional error caused by the fact that we only have a
finite dataset

June 5, 2020 13 / 62

Introduction

Approximation error: Basics

How do we approximate functions?

polynomials, piecewise polynomials, splines

Fourier,wavelets

other special basis functions (e.g. atomic orbitals)

‖f − fm‖L2(X) ≤ C0m
−α/d‖f‖Hα(X)

CoD!

June 5, 2020 14 / 62

Introduction

Estimation error

Since we can only work with a finite dataset, what happens to the solution outside of the
dataset?

Figure: The Runge phenomenon: f ∗(x) = 1
1+25x2

June 5, 2020 15 / 62

Introduction

Generalization gap = difference between training and testing errors

”Generalization gap” = |R(f̂)− R̂n(f̂)| = |I(g)− In(g)|

R(f) =

∫
Rd

(f (x)− f ∗(x))2dµ, R̂n(f) =
1

n

∑
j

(f (xj)− f ∗(xj))2

I(g) =

∫
g(x)dµ, In(g) =

1

n

∑
j

g(xj), g(x) = (f̂ (x)− f ∗(x))2

Difficulty: f̂ is highly correlated with {xj}.

Should NOT expect: generalization gap = O(1/
√
n) to hold automatically.

If hypothesis space = space of all Lipschitz-1 functions:

generalization gap ∼ 1

n1/d

This gives rise to CoD for the size of the dataset.

June 5, 2020 16 / 62

Introduction

Rademacher complexity

Let H be a set of functions, and S = (x1,x2, ...,xn) be a set of data points. The
Rademacher complexity of H with respect to S is defined as

RadS(H) =
1

n
Eξ

[
sup
h∈H

n∑
i=1

ξih(xi)

]
,

where {ξi}ni=1 are i.i.d. random variables taking values ±1 with equal probability.

Theorem (Rademacher complexity and the generalization gap)

For any δ ∈ (0, 1), with probability at least 1− δ over the random samples
S = (x1, · · · ,xn),

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≤ 2 RadS(H) + sup
h∈H
‖h‖∞

√
log(2/δ)

2n
.

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ≥ 1

2
RadS(H)− sup

h∈H
‖h‖∞

√
log(2/δ)

2n
.

June 5, 2020 17 / 62

Introduction

Two types of machine learning models

(1). Models that suffer from CoD:

generalization error = O(m−α/d) and/or O(n−β/d)

piecewise polynomial approximation

wavelets with fixed wavelet basis

(2). Models that don’t suffer from CoD: For example

generalization error =

∫
(f̂ (x)− f ∗(x))2µ(x) ∼ γ1(f ∗)/m + γ2(f ∗)/

√
n

These are “Monte-Carlo-like” bounds, γ1 and γ2 play the role of variance in Monte Carlo.

random feature models

two-layer neural network models

deep residual neural network models

There is also the possibility of CoD from the optimization algorithm.

June 5, 2020 18 / 62

Generalization error estimates

Outline

1 Introduction

2 Generalization error estimates

3 The optimization problem and the gradient descent dynamics

4 Machine learning from a continuous viewpoint

5 Flow-based representation and deep neural network models

6 Summary

June 5, 2020 19 / 62

Generalization error estimates

General procedure

Given a machine learning model:

Approximation error:

inf
f∈Hm

R(f) = inf
f∈Hm

‖f − f ∗‖2
L2(dµ) .

Γ(f ∗)2

m

Identify Γ(f ∗).

Direct and inverse approximation theorems

Estimation error (generalization gap): HQ = {f,Γ(f) ≤ Q}. Then we have

RadS(HQ) .
Q√
n

Combined:

R(f̂) .
Γ(f ∗)2

m
+

Γ(f ∗)√
n

June 5, 2020 20 / 62

Generalization error estimates

1. Random feature model

{φ(·;w)}: collection of random features, e.g. φ(x,w) = σ(wTx).
π: prob distribution of the random variable w.

Hypothesis space: Given any realization {wj}mj=1, i.i.d. with distribution π

Hm({wj}) = {fm(x,a) =
1

m

m∑
j=1

ajφ(x;wj)}.

Consider functions of the form

Fp =
{
f : f (x) =

∫
a(w)φ(·;w)π(w)}, ‖f‖Fp := (E[|a(w)|p])1/p <∞

}
F2 is the same as the reproducing kernel Hilbert space (RKHS) with kernel:

k(x,x′) = Ew∼π[φ(x;w)φ(x′;w)]

June 5, 2020 21 / 62

Generalization error estimates

Direct and Inverse Approximation Theorem

Theorem (Direct Approximation Theorem)

Assume ‖f‖F∞ <∞. Then for any δ ∈ (0, 1), with probability at least 1− δ over the
random sampling of {wj}mj=1, there exists a ∈ Rm such that

R(a) ≤
‖f‖2

F∞
m

(1 + log(2/δ)) .

Moreover, supj∈[m] |aj| ≤ ‖f‖F∞.

Theorem (Inverse Approximation Theorem)

Assume that φ is continuous and bounded, and supp(π) is compact. Let (wj)
∞
j=1 be a

sequence of i.i.d. samples of π. Assume that there exist a sequence (aj)
∞
j=0 with

supj |aj| ≤ C, such that

lim
m→∞

1

m

m∑
j=1

ajσ(wj · x) = f ∗(x),

for all x ∈ [0, 1]d. Then ‖f ∗‖F∞ ≤ C and there exists a∗(·) : Ω 7→ R such that

f ∗(x) =

∫
Ω

a∗(w)σ(w · x)dπ(w), a.s.

June 5, 2020 22 / 62

Generalization error estimates

Complexity estimates

Theorem
Let F2(Q) = {f ∈ F2, ‖f‖F2 ≤ Q}. Then we have

RadS(F2(Q)) ≤ Q

√
ln(2d)

n

June 5, 2020 23 / 62

Generalization error estimates

A priori estimates of the regularized model

Ln,λ(a) = R̂n(a) +
λ√
n

‖a‖√
m
,

Consider the regularized estimator

ân,λ = argmin Ln,λ(a)

Theorem
Assume that ‖f ∗‖∞ ≤ 1. There exist a constant C0, such that for any δ > 0, if
λ ≥ C0,m ≥ log2(n/δ), then with probability at least 1− δ over the choice of training set,
we have

R(ân) .
1

m
‖f ∗‖2

F2
+
‖f ∗‖F2√

n
+

√
log(n‖f ∗‖F∞/δ)

n
+

log2(n/δ)

m2
‖f ∗‖2

F∞.

June 5, 2020 24 / 62

Generalization error estimates

2. Two-layer neural network model: Barron spaces

Hm = {fm(x) =
1

m

∑
j

ajσ(wT
j x)}

Consider the function f : X = [0, 1]d 7→ R of the following form

f (x) =

∫
Ω

aσ(wTx)ρ(da, dw) = Eρ[aσ(wTx)]}, x ∈ X

Ω = R1 × Rd+1, ρ is a probability distribution on Ω.

‖f‖B = inf
ρ∈Pf

(
Eρ[a2‖w‖2

1]
)1/2

where Pf := {ρ : f (x) = Eρ[aσ(wTx)]}.

B = {f ∈ C0 : ‖f‖B <∞}

June 5, 2020 25 / 62

Generalization error estimates

Barron space and RKHS

Equivalent formulation (taking conditional expectation with respect to w):

f ∗(x) =

∫
a(w)σ(wTx)π(dw), x = (x, 1)

Define:
kπ(x,x′) = Ew∼πσ(wTx)σ(wTx′)

We can write
B =

⋃
π

Hkπ

Shallow neural network can be understood as kernel method with adaptive (learned) kernel.

The ability to learn the right kernel is VERY important.
For example, SVM would be perfect if the right kernel was known.

June 5, 2020 26 / 62

Generalization error estimates

Theorem (Direct Approximation Theorem)
There exists an absolute constant C0 such that

‖f − fm‖L2(X) ≤
C0‖f‖B√

m

Theorem (Inverse Approximation Theorem)
Let

NC
def
= { 1

m

m∑
k=1

akσ(wT
kx) :

1

m

m∑
k=1

|ak|2‖wk‖2
1 ≤ C2,m ∈ N+ }.

Let f ∗ be a continuous function. Assume there exists a constant C and a sequence of
functions fm ∈ NC such that

fm(x)→ f ∗(x)

for all x ∈ X , then there exists a probability distribution ρ∗ on Ω, such that

f ∗(x) =

∫
aσ(wTx)ρ∗(da, dw),

for all x ∈ X and ‖f ∗‖B ≤ C.

June 5, 2020 27 / 62

Generalization error estimates

Complexity estimates

Theorem (Bach, 2017)

Let FQ = {f ∈ B, ‖f‖B ≤ Q}. Then we have

RadS(FQ) ≤ 2Q

√
2 ln(2d)

n

June 5, 2020 28 / 62

Generalization error estimates

A priori estimates for regularized model

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖P, θ̂n = argmin Ln(θ)

where the path norm is defined by:

‖θ‖P =

(
1

m

m∑
k=1

|ak|2‖wk‖2
1

)1/2

Theorem (E, Ma, Wu, 2018)

Assume that the target function f ∗ : X 7→ [0, 1] ∈ B. There exist constants C0, C1, C2, such
that for any δ > 0, if λ ≥ C0, then with probability at least 1− δ over the choice of training
set, we have

R(θ̂n) ≤ C1

(
‖f ∗‖2

B
m

+ ‖f ∗‖B

√
log(2d)

n

)
+ C2

√
log(4C2/δ) + log(n)

n
.

Typical results in ML literature: a posteriori estimates

R(θ̂n)− R̂n(θ̂n) ≤ C1
‖θ̂‖√
n

June 5, 2020 29 / 62

The optimization problem and the gradient descent dynamics

Outline

1 Introduction

2 Generalization error estimates

3 The optimization problem and the gradient descent dynamics

4 Machine learning from a continuous viewpoint

5 Flow-based representation and deep neural network models

6 Summary

June 5, 2020 30 / 62

The optimization problem and the gradient descent dynamics

Issues

The optimization problem: Can we make the training error small? How fast?
The loss function is non-convex.
Possible CoD in time?

The generalization problem: Can we make the testing error small?
Global optimum is non-unique (Cooper: Global minimum forms a manifold of dimension
m− n)
Which one is picked? Does it generalize well?
Implicit regularization?

June 5, 2020 31 / 62

The optimization problem and the gradient descent dynamics

Gradient descent for the random feature model

fm(x, t) =
1

m

∑
j

aj(t)σ(wT
j x), θ(t) = {aj(t), j ∈ [m]}

d

dt
aj(t) = −∇ajR̂n(θ) = − 1

m

∑
k

K̂(wj,wk)ak(t) + f̃ (wj)

K̂(w, w̃) =
1

n

∑
j

σ(wTxj)σ(w̃Txj), f̃ (w) =
1

n

∑
j

f ∗(xj)σ(wTxj)

June 5, 2020 32 / 62

The optimization problem and the gradient descent dynamics

Resonance and slow deterioration

101 102 103 104

Number of features: m

10 2

10 1

100

Te
st

 e
rro

r

m = n

Min-norm Sol.

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Sm
al

le
st

 e
ig

en
va

lu
e

MNIST, n=500

101 102 103 104

Number of features

10 2

10 1

100

Te
st

 e
rro

r

T=1e+04
T=1e+05
T=1e+06
T=1e+08
T=1e+12

Figure: Left: Test error as a function of m for n = 500. Right: The test error of GD solutions obtained by

running different number of iterations.

The “double descent” phenomenon (Saxe, Belkin et al)
The large test error is caused by very small eigenvalues of the Gram matrix, which also lead
to slow convergence.

June 5, 2020 33 / 62

The optimization problem and the gradient descent dynamics

Theorem

Let Φ = σ(XTB), {λi} be the singular values of Φ, and λ̂i = λi
n . Let f ∗(x) = ψ1(x), the

first eigenfunction of the kernel operator. There exists constant C s.t., for any δ > 0, with
prob no less than 1− δ,

‖f̂t − f ∗‖ ≤ e−λ̂
2
1t + C

(
1 + λ̂−2

b
√
nc log

2

δ

)−1/2(
1√
n

+ Mn−
1
4d(t)

)
,

where M =
∫
‖σ(BTx)‖2π(dx), and d(t) = min

{√
t, λ̂b

√
nc+1t, λ̂

−1
n

}
.

︸ ︷︷ ︸
I

︸ ︷︷ ︸
II

︸ ︷︷ ︸
III

June 5, 2020 34 / 62

The optimization problem and the gradient descent dynamics

Degeneracy of neural network models to random feature models in
the over-parametrized regime

fm(x;a,B) =

m∑
j=1

ajσ(bTj x) = aTσ(Bx), (1)

Theorem

Let λn = λmin(K) and assume β = 0. Denote by fm(x; ã(t),B0)) the solutions of GD
dynamics for the random feature model. For any δ ∈ (0, 1), assume that
m & n2λ−4

n δ
−1 ln(n2δ−1). Then with probability at least 1− 6δ we have

R̂n(a(t),B(t)) ≤ e−mλntR̂n(a(0),B(0)) (2)

sup
x∈Sd−1

|f (x;a(t),B(t))− f (x; ã(t),B0)| .
(1 +

√
ln(δ−1))2λ−1

n√
m

. (3)

Observation: Time scale separation

ȧj(t) ∼ O(‖bj‖) = O(1) (4)

ḃj(t) ∼ O(|aj|) = O

(
1

λnm

)
(5)

The dynamics of b is effectively frozen.
June 5, 2020 35 / 62

Machine learning from a continuous viewpoint

Outline

1 Introduction

2 Generalization error estimates

3 The optimization problem and the gradient descent dynamics

4 Machine learning from a continuous viewpoint

5 Flow-based representation and deep neural network models

6 Summary

June 5, 2020 36 / 62

Machine learning from a continuous viewpoint

Looking for “well-posed” formulations of machine learning

1 The continuous formulation of the machine learning model

representation of functions: integral transform representation and flow-based representation

the variational problem for minimizing the population risk (loss function)

gradient flow for the variational problem (training, a PDE-like problem)

2 Discretization

spectral methods

particle methods, smoothed particle methods (analog of Monte Carlo)

Remarks:

Conventional neural network models/algorithms can be recovered this way

Continuous formulation-based models are easier to analyze and tend to be more robust
in practice

June 5, 2020 37 / 62

Machine learning from a continuous viewpoint

Similar philosophy in image processing

Example: Denoising

constructing various special purpose filters, e.g. wavelet-based, curvelet-based

start with a continuous mathematical problems (Mumford-Shah, Rudin-Osher-Fatemi),
and then discretize and optimize

I(u) =

∫
Ω

((u− f)2 + λ|∇u|)dx

f =original image, u= denoised image.

June 5, 2020 38 / 62

Machine learning from a continuous viewpoint

Representing functions: An illustrative example

Traditional approach:

f (x) =

∫
Rd
a(ω)ei(ω,x)dω, fm(x) =

1

m

∑
j

a(ωj)e
i(ωj ,x)

{ωj} is a fixed grid, e.g. uniform.

‖f − fm‖L2(X) ≤ C0m
−α/d‖f‖Hα(X)

“New” approach:

f (x) =

∫
Rd
a(ω)ei(ω,x)π(dω) = Eω∼πa(ω)ei(ω,x)

where π is a probability measure on Rd. Let {ωj} be an i.i.d. sample of π.

E|f (x)− 1

m

m∑
j=1

a(ωj)e
i(ωj ,x)|2 =

var(f)

m

where
var(f) = Eω∼π|a(ω)|2 − f (x)2

f (x) =
∫
Rd a(ω)ei(ω,x)π(dω) can be regarded as a continuous version of two-layer neural

network function with activation function σ defined by σ(z) = eiz.
June 5, 2020 39 / 62

Machine learning from a continuous viewpoint

Integral transform-based representation and the variational
problem

Now consider functions represented in the form:

f (x, θ) =

∫
Rd
a(w)σ(wTx)π(dw) = Ew∼πa(w)σ(wTx)

where θ denotes the parameter to be optimized in order to get the best approximation of
some target function f ∗. θ can either be a(·) which corresponds to a feature-based model, or
the pair (a(·), π(·)) in which case we get a two-layer neural network-like model.
One can also write the above equivalently as

f (x, θ) = E(a,w)∼ρaσ(wTx)

where ρ(da, dw) = π(dw)δ(a− a(w))da. In this case, θ = ρ.

Given a target function f ∗, the variational problem for minimizing the population risk
becomes minR where

R(θ) = Ex∼µ(f (x, θ)− f ∗(x))2

June 5, 2020 40 / 62

Machine learning from a continuous viewpoint

The continuous formulation: Gradient flows

Recall the population risk: R(f) = Ex∼µ(f (x)− f ∗(x))2 = “free energy”

f (x) =

∫
a(w)σ(wTx)π(dw) = Ew∼πa(w)σ(wTx)

Follow Halperin and Hohenberg (1977)

a = non-conserved, use “model A” dynamics (Allen-Cahn):

∂a

∂t
= −δR

δa

π = conserved (probability density), use “model B” (Cahn-Hilliard):

∂π

∂t
+∇ · J = 0

J = πv, v = −∇V, V =
δR
δπ
.

June 5, 2020 41 / 62

Machine learning from a continuous viewpoint

Gradient flow for the feature-based model

Fix π, optimize over a.

∂ta(w, t) = −δR
δa

(w, t) = −
∫
a(w̃, t)K(w, w̃)π(dw̃) + f̃ (w)

K(w, w̃) = Ex[σ(wTx)σ(w̃Tx)], f̃ (w) = Ex[f ∗(x)σ(wTx)]

This is an integral equation with a symmetric positive definite kernel.

Decay estimates due to convexity: Let f ∗(x) = Ew∼πa∗(w)σ(wTx),

I(t) =
1

2
‖a(·, t)− a∗(·)‖2 + t(R(a(t))−R(a∗))

Then we have
dI

dt
≤ 0, R(a(t)) ≤ C0

t

June 5, 2020 42 / 62

Machine learning from a continuous viewpoint

Conservative gradient flow

f (x) = Eu∼ρφ(x,u)

Example: u = (a,w), φ(x,u) = aσ(wTx)

V (u) =
δR
δρ

(u) = Ex[(f (x)− f ∗(x))φ(x,u)] =

∫
K(u, ũ)ρ(dũ)− f̃ (u)

∂tρ = ∇(ρ∇V)

This is the mean-field equation derived by Chizat and Bach (2018), Mei, Montanari and
Nguyen (2018), Rotskoff and Vanden-Eijnden (2018), Sirignano and Spiliopoulos
(2018), by studying the continuum limit of two-layer neural networks.

It is the gradient flow of R under the Wasserstein metric.

R is convex but NOT displacement convex.

June 5, 2020 43 / 62

Machine learning from a continuous viewpoint

Discretizing the gradient flows

Discretizing the population risk (into the empirical risk) using data

Discretizing the gradient flow
particle method – the dynamic version of Monte Carlo

smoothes particle method – analog of vortex blob method

spectral method – very effective in low dimensions

We will see that gradient descent algorithm (GD) for random feature and neural network
models are simply the particle method discretization of the gradient flows discussed before.

June 5, 2020 44 / 62

Machine learning from a continuous viewpoint

Particle method for the feature-based model

∂ta(w, t) = −δR
δa

(w) = −
∫
a(w̃, t)K(w, w̃)π(dw̃) + f̃ (w)

π(dw) ∼ 1

m

∑
j

δwj, a(wj, t) ∼ aj(t)

Discretized version:

d

dt
aj(t) = − 1

m

∑
k

K(wj,wk)ak(t) + f̃ (wj)

This is exactly the GD for the random feature model.

f (x) ∼ fm(x) =
1

m

∑
j

ajσ(wT
j x)

June 5, 2020 45 / 62

Machine learning from a continuous viewpoint

Discretization of the conservative flow

∂tρ = ∇(ρ∇V)

ρ(da, dw) ∼ 1

m

∑
j

δ(aj,wj)

I(u1, · · · ,um) = R(fm), uj = (aj,wj), j =∈ [m]

where fm(x) = 1
m

∑
j ajσ(wT

j x).

Lemma: Given a set of initial data {u0
j = (a0

j ,w
0
j), j ∈ [m]}. The solution of (??) with

initial data ρ(0) = 1
m

∑m
j=1 δu0

j
is given by

ρ(t) =
1

m

m∑
j=1

δuj(t)

where {uj(·), j =∈ [m]} solves the following systems of ODEs:

duj
dt

= −∇ujI(u1, · · · ,um), uj(0) = u0
j , j ∈ [m]

Note that this is exactly the GD dynamics for two-layer neural networks.
June 5, 2020 46 / 62

Flow-based representation and deep neural network models

Outline

1 Introduction

2 Generalization error estimates

3 The optimization problem and the gradient descent dynamics

4 Machine learning from a continuous viewpoint

5 Flow-based representation and deep neural network models

6 Summary

June 5, 2020 47 / 62

Flow-based representation and deep neural network models

Deep fully connected neural network models

f (x, θ) = WLσ ◦ (WL−1σ ◦ (· · ·σ ◦ (W0x))), θ = (W0,W1, · · · ,WL)

σ is a scalar function (the activation function), e.g. σ(x) = max(x, 0), ReLU
Numerical instability: Exploding gradients (see Hanin (2018))

∇θf ∼WL ·WL−1 · · ·W0 ∼ κL, L >> 1

Solution: Using residual networks (ResNet, He et al. (2016))

z0,L(x) = V x,

zl+1,L(x) = zl,L(x) +
1

L
Ulσ ◦ (Wlzl,L(x)), l = 0, 1, · · · , L− 1

f (x, θ) = α · zL,L(x)

June 5, 2020 48 / 62

Flow-based representation and deep neural network models

Flow-based representation

Dynamical system viewpoint (E (2017), Haber and Ruthotto (2017) ...)

dz

dτ
= g(τ, z), z(0) = x̃

The flow-map at time 1: x→ z(1).

Trial functions:
f = αTz(1)

Will take α = 1 for simplicity.

June 5, 2020 49 / 62

Flow-based representation and deep neural network models

The correct form of g (E, Ma and Wu, 2019):

g(τ, z) = Ew∼πτa(w, τ)σ(wTz)

where {πτ} is a family of probability distributions.

dz

dτ
= Ew∼πτa(w, τ)σ(wTz)

As before, we can also use the model:

dz

dτ
= E(a,w)∼ρτaσ(wTz)

f (x) = 1Tzx1

Discretize: We obtain the residual neural network model:

zl+1 = zl +
1

LM

M∑
j=1

aj,lσ(zTl wj,l), l = 1, 2, · · · , L− 1, z0 = V x̃

fL(x) = 1TzL

June 5, 2020 50 / 62

Flow-based representation and deep neural network models

Gradient flow for flow-based models

Consider a generalized flow-based model

zx0 = V x
dzxτ
dτ

= Ew∼ρτ [φ(zxτ ,w)]

f (x; ρ) = 1Tzx1 .

Consider minimizing the following risk

R(f) = Ex(f (x)− f ∗(x))2.

The parameters that need to be optimized is a family of prob distributions:

θ = {ρτ , τ ∈ [0, 1]}

Denote by W := {ρ : [0, 1] 7→ P2(Ω)} the space of all feasible parameters. For any
ρ1, ρ2 ∈ W , define the following metric:

d(ρ1, ρ2) :=

√∫ 1

0

W 2
2 (ρ1

τ , ρ
2
τ)dτ .

June 5, 2020 51 / 62

Flow-based representation and deep neural network models

Define the Hamiltonian H : Rd × Rd × P2(Ω) :7→ R as

H(z,p, µ) = Ew∼µ[pTφ(x,w)].

Theorem
The gradient flow in the metric space (W,d) is given by

∂tρτ(w, t) = ∇ · (ρτ(w, t)∇V (w; ρ)) , ∀τ ∈ [0, 1],

where

V (w; ρ) = Ex[
δH

δµ

(
zt,xτ ,pt,xτ , ρτ(·; t)

)
],

and for each x, (zt,xτ ,pt,xτ) are defined by the forward and backward equations, respectively:

dzt,xτ
dτ

= ∇pH = Ew∼ρτ (·;t)[φ(zt,xτ ,w)]

dpt,xτ
dτ

= −∇zH = Ew∼ρτ (·;t)[∇T
zφ(zt,xτ ,w)pt,xτ].

with the boundary conditions:

zt,x0 = V x̃

pt,x1 = 12(f (x; ρ(·; t))− f ∗(x)).

June 5, 2020 52 / 62

Flow-based representation and deep neural network models

Discretization

forward Euler for the flow in τ variable, step size 1/L.

particle method for the GD dynamics, M samples in each layer

zt,xl+1 = zt,xl +
1

LM

M∑
j=1

φ(zt,xl ,wj
l (t)), l = 0, . . . , L− 1

pt,xl = pt,xl+1 +
1

LM

M∑
j=1

∇zφ(zt,xl+1,w
j
l+1(t))pt,xl+1, l = 0, . . . , L− 1

dwj
l (t)

dt
= −Ex[∇T

wφ(zt,xl ,wj
l (t))p

t,x
l].

This recovers the gradient descent algorithm (with back-propagation) for the ResNet:

zl+1 = zl +
1

LM

M∑
j=1

φ(zl,wl).

June 5, 2020 53 / 62

Flow-based representation and deep neural network models

Compositional law of large numbers

Consider the following compositional scheme:

z0,L(x) = x,

zl+1,L(x) = zl,L(x) +
1

LM

M∑
k=1

al,kσ(wT
l,kzl,L(x)),

(al,k,wl,k) are pairs of vectors i.i.d. sampled from a distribution ρ.

Theorem (E, Ma and Wu 2019)
Assume that

Eρ‖|a||wT |‖2
F <∞

where for a matrix or vector A, |A| means taking element-wise absolute value for A. Define
z by

z(x, 0) = V x,
d

dτ
z(x, t) = E(a,w)∼ρaσ(wTz(x, τ)).

Then we have
zL,L(x)→ z(x, 1)

almost surely as L→ +∞.
June 5, 2020 54 / 62

Flow-based representation and deep neural network models

Compositional function spaces

Extension: Let {ρτ} be a family of prob distributions (for (a,w)) such that Eρτg(a,w) is
integrable as a function of τ for any continuous function g. Define:

z(x, 0) = V x,
d

dτ
z(x, τ) = E(a,w)∼ρτaσ(wTz(x, τ))

Let fα,{ρτ},V (x) = αTz(x, 1). Define “compositional norm”:

d

dτ
N(t) = Eρτ |a||w|TN(τ),

N(0) = I

‖f‖D1 = inf
f=fα,{ρτ },V

‖α‖1 ‖N(1)‖1,1 ‖V ‖1,1,

‖ · ‖D2 is defined similarly.

June 5, 2020 55 / 62

Flow-based representation and deep neural network models

Barron space and the compositional function space

Theorem
B ⊂ D2. There exists constant C > 0, such that

‖f‖D2 ≤
√
d + 1‖f‖B

holds for any f ∈ B,

June 5, 2020 56 / 62

Flow-based representation and deep neural network models

Theorem (Direct approximation theorem)

Let f ∈ L2(X) ∩ D2. There exists a residue-type neural network fL(·; θ̃) of input dimension
d + 1 and depth L such that ‖fL‖P . ‖f‖3

c1
and∫

X

|f (x)− fL((x); θ̃)|2dx→ 0 .
‖f‖2

c2

L

Furthermore, if f = fα,{ρτ},V and ρτ is Lipschitz continuous in τ , then∫
X

|f (x)− fL((x); θ̃)|2dx .
‖f‖2

D2

L

Theorem (Inverse approximation theorem)

Let f ∈ L2(X). Assume that there is a sequence of residual networks {fL(x)}∞L=1 with
increasing depth such that ‖f (x)− fL(x)‖ → 0 as L→∞. Assume further that the
parameters are (entry-wise) bounded, then there exists α, {ρτ} and V such that

f (x) = fα,{ρτ},V (x).

June 5, 2020 57 / 62

Flow-based representation and deep neural network models

Complexity control

Rademacher complexity bound for path norm

Let FL,Q = {fL : ‖fL‖D1 ≤ Q}. Assume xi ∈ [0, 1]d. Then, for any data set
S = (x1, ...,xn), we have

RadS(FL,Q) ≤ Q2

√
2 log(2d)

n
.

June 5, 2020 58 / 62

Flow-based representation and deep neural network models

Regularized model and a priori estimates

Regularized loss function:

Ln,λ(θ) = R̂n(θ) + λ(‖θ‖D1 + 1)

√
2 log(2d)

n
.

Theorem (E, Ma and Wang, 2019)

Assume that f ? : [0, 1]d → [−1, 1] such that f ∗ ∈ D2. Let

θ̂ = argmin θLn,λ(θ)

then if λ is larger than some constant, and the depth L is sufficiently large, for any δ > 0,
with probability at least 1− δ,

R(θ̂) .
‖f ∗‖2

D2

L
+ λ(‖f ∗‖2

D1
+ 1)

√
log(2d)

n
+

√
log(1/δ)

n
.

June 5, 2020 59 / 62

Summary

Outline

1 Introduction

2 Generalization error estimates

3 The optimization problem and the gradient descent dynamics

4 Machine learning from a continuous viewpoint

5 Flow-based representation and deep neural network models

6 Summary

June 5, 2020 60 / 62

Summary

Numerical analysis viewpoint of ML

1 Understanding the “physics”:
“implicit regularization” in certain cases

degeneracy to random feature model (“neural tangent kernel”)

resonance and slow deterioration

the frequency principle

mean-field scaling

2 Design principles:
start from continuous formulation, then discretize

Monte Carlo as the benchmark

3 Analysis of ML models and algorithms:
New function space hierarchies in high dimension: RKHS, Barron space, compositional function

spaces, ...

June 5, 2020 61 / 62

Summary

Open questions

1 Asymptotic (large time) convergence of the gradient flows
2 3 and more layers......
3 Classification problem (need to define the relevant space of probability measures in high

dimensions)
4 Density estimation in high dimension, similar issue + regularization

More generally, high dimensional analysis (function spaces, probability distributions, flows,
PDEs, etc)

June 5, 2020 62 / 62

Summary

Papers:

W. E, C. Ma and L. Wu, “A priori estimates for two layer neural networks”,
arxiv.org/pdf/1810.06397.pdf, 2018.

W. E, C. Ma and Q.C. Wang, “A priori estimates of the population risk for residual
networks”, https://arxiv.org/abs/1903.02154, 2018.

W. E, C. Ma and L. Wu, “A Comparative Analysis of the Optimization and
Generalization Property of Two-layer Neural Network and Random Feature Models
Under Gradient Descent Dynamics”, arxiv.org/abs/1904.04326, 2019.

W. E, C. Ma and L. Wu, “Barron spaces and compositional function spaces for neural
network models” https://arxiv.org/abs/1906.08039, 2019.

Weinan E, Chao Ma and Lei Wu, “Machine Learning from a Continuous Viewpoint”,
arxiv.org/abs/1912.12777, 2019.

June 5, 2020 63 / 62

	Introduction
	Generalization error estimates
	The optimization problem and the gradient descent dynamics
	Machine learning from a continuous viewpoint
	Flow-based representation and deep neural network models
	Summary

