Replica Exchange for Non-Convex Optimization

Jing Dong

Columbia University
Joint work with Xin T. Tong at NUS

I N Q U I R. Y

INTOTHE

NATURE ind CAUSES

OFTHE

WEALTH of NATIONS.

B Y

```
    A D A M S M I T H, L.L. D.
    AND F.R.S. OF LONDON AND EDINBURGH: ONE OF THE COMMISSIONERS OF HIS MAJESTY'S CUSTOMS IN scotland;
AND FORMERLY PROFESSOR OF MORAL PHILOSOPHY IN THE UNIVERSITY OE GLASGOW.
```


Division of labor

IN. THREE VOLUMES.
V. O L. I.

A NEW EDITION:

$$
P H I L A D E L P H I A:
$$

Printed. for THOMAS DOBSON2 at the stone HOUSE, IN SECOND STREET:

MDCC LXXXIX.

Objective

$$
\min _{x \in R^{d}} F(x)
$$

Gradient Descent (GD)

$$
X_{n+1}=X_{n}-h \nabla F\left(X_{n}\right)
$$

When the step size h is properly chosen

- If F is convex

$$
F\left(X_{n}\right)-F^{*}=O(1 / n)
$$

- If F is strongly convex, i.e., $F(y)-F(x) \geq\langle\nabla F(x), y-x\rangle+\frac{m}{2}\|y-x\|^{2}$

$$
F\left(X_{n}\right)-F^{*}=O\left((1-m h)^{n}\right)
$$

Gradient Descent (GD)

$$
X_{n+1}=X_{n}-h \nabla F\left(X_{n}\right)
$$

When the step size h is properly chosen

- If F is convex

$$
F\left(X_{n}\right)-F^{*}=O(1 / n)
$$

- If F is strongly convex, i.e., $F(y)-F(x) \geq\langle\nabla F(x), y-x\rangle+\frac{m}{2}\|y-x\|^{2}$

$$
F\left(X_{n}\right)-F^{*}=O\left((1-m h)^{n}\right)
$$

- However, if F is non-convex, X_{n} can be trapped in local minimums or saddle points

Langevin Dynamic (LD)

$$
d Y_{t}=-\nabla F\left(Y_{t}\right) d t+\sqrt{2 \gamma} d B_{t}
$$

Under suitable regularity conditions on F, Y_{t} has a stationary distribution

$$
\pi(y) \propto \exp \left(-\frac{1}{\gamma} F(y)\right)
$$

Langevin Dynamic (LD)

$$
d Y_{t}=-\nabla F\left(Y_{t}\right) d t+\sqrt{2 \gamma} d B_{t}
$$

Under suitable regularity conditions on F, Y_{t} has a stationary distribution

$$
\pi(y) \propto \exp \left(-\frac{1}{\gamma} F(y)\right)
$$

Let x_{0} denote a local minimum of F, z_{0} be the communicating saddle point, and τ_{0} denote the time to "escape"

$$
E_{x_{0}}\left[\tau_{0}\right] \sim \frac{Z_{0}}{(2 \pi \gamma)^{d / 2}} \frac{2 \pi \gamma \sqrt{\left|\operatorname{det}\left(\nabla^{2} F\left(z_{0}\right)\right)\right|}}{\left|\lambda_{1}\left(z_{0}\right)\right|} \exp \left(\frac{F\left(z_{0}\right)-F\left(x_{0}\right)}{\gamma}\right)
$$

Menz and Schlichting (2014)

Langevin Dynamic (LD)

$$
\begin{gathered}
d Y_{t}=-\nabla F\left(Y_{t}\right) d t+\sqrt{2 \gamma} d B_{t} \\
Y_{n+1}=Y_{n}-h \nabla F\left(Y_{n}\right)+\sqrt{2 \gamma h} Z_{n}
\end{gathered}
$$

Langevin Dynamic (LD)

$$
\begin{gathered}
d Y_{t}=-\nabla F\left(Y_{t}\right) d t+\sqrt{2 \gamma} d B_{t} \\
Y_{n+1}=Y_{n}-h \nabla F\left(Y_{n}\right)+\sqrt{2 \gamma h} Z_{n}
\end{gathered}
$$

If F is strongly convex, $E\left[F\left(Y_{n}\right)\right]-F^{*}=O(\exp (-m n h)+\gamma h)$
If γ is a constant, to achieve an ε accuracy, we need $h=O(\varepsilon)$

$$
n=O\left(\varepsilon^{-1} \log (1 / \varepsilon)\right)
$$

GD versus LD

Gradient Descent:
$X_{n+1}=X_{n}-h \nabla F\left(X_{n}\right)$
$>$ Good at exploitation
> Terrible at exploration

Langevin Dynamics
$Y_{n+1}=Y_{n}-h \nabla F\left(Y_{n}\right)+\sqrt{2 \gamma h} Z_{n}$
$>$ Good at exploration
$>$ Inefficient at exploitation

GD versus LD

Gradient Descent:
$X_{n+1}=X_{n}-h \nabla F\left(X_{n}\right)$
$>$ Good at exploitation
$>$ Terrible at exploration

Langevin Dynamics $Y_{n+1}=Y_{n}-h \nabla F\left(Y_{n}\right)+\sqrt{2 \gamma h} Z_{n}$
$>$ Good at exploration
$>$ Inefficient at exploitation

Can we enjoy the benefit of both?
Yes! We can let them "collaborate".

GDxLD

```
Algorithm 1: GDxLD: offline optimization
    Input: Temperature \(\gamma\), step size \(h\), number of steps \(N\), and initial \(X_{0}, Y_{0}\).
    for \(n=0\) to \(N-1\) do
        \(X_{n+1}^{\prime}=X_{n}-\nabla F\left(X_{n}\right) h ;\)
        \(Y_{n+1}^{\prime}=Y_{n}-\nabla F\left(Y_{n}\right) h+\sqrt{2 \gamma h} Z_{n}\), where \(Z_{n} \sim N\left(0, I_{d}\right)\);
        if \(F\left(Y_{n+1}^{\prime}\right)<F\left(X_{n+1}^{\prime}\right)\) then
        \(\left(X_{n+1}, Y_{n+1}\right)=\left(Y_{n+1}^{\prime}, X_{n+1}^{\prime}\right) ;\)
        else
            \(\left(X_{n+1}, Y_{n+1}\right)=\left(X_{n+1}^{\prime}, Y_{n+1}^{\prime}\right)\).
        end
    end
```

Output: X_{N} as an optimizer for F.

Assumption 1. The gradient is Lipschitz continuous.

$$
\|\nabla F(x)-\nabla F(y)\| \leq L\|x-y\|
$$

Assumption 2. The objective function is coercive.

$$
-\langle\nabla F(x), x\rangle \leq-\lambda_{0}\|x\|^{2}+M_{0}
$$

Assumption 3. There is a unique global minimum. The objective function is (strongly) convex in a neighborhood of the global minimum.

Assumption 1. The gradient is Lipschitz continuous.

$$
\|\nabla F(x)-\nabla F(y)\| \leq L\|x-y\|
$$

Assumption 2. The objective function is coercive.

$$
-\langle\nabla F(x), x\rangle \leq-\lambda_{0}\|x\|^{2}+M_{0}
$$

Assumption 3. There is a unique global minimum. The objective function is (strongly) convex in a neighborhood of the global minimum.

Under Assumptions $1,2,3$, and $h<1 /(2 L)$, for any $\varepsilon>0$ and $\delta>0$, there exists $N(\varepsilon, \delta)=O\left(\varepsilon^{-1}\right)+O(\log (1 / \delta))$, such that for any $n>N(\varepsilon, \delta)$,

$$
P\left(F\left(X_{n}\right)-F^{*} \leq \varepsilon\right) \geq 1-\delta .
$$

If in addition, F is strongly convex in a neighborhood of X^{*} and $h<\min \{1 /(2 L)$, $1 / m\}$,

$$
N(\varepsilon, \delta)=O(\log (1 / \varepsilon))+O(\log (1 / \delta))
$$

GDxLD

$\gamma=1, h=0.1$

$$
Y_{n+1}=Y_{n}-h \nabla F\left(Y_{n}\right)+\sqrt{2 \gamma h} Z_{n}
$$

$$
h=0.1
$$

Online Optimization with Stochastic Gradient

$$
\begin{gathered}
F(x)=E_{S}[f(x, S)] \\
\nabla F(x)=E_{S}\left[\nabla_{x} f(x, S)\right] \\
\hat{F}\left(X_{n}\right)=\frac{1}{B} \sum_{i=1}^{B} f\left(X_{n}, s_{i}\right), \quad \nabla \hat{F}\left(X_{n}\right)=\frac{1}{B} \sum_{i=1}^{B} \nabla_{x} f\left(X_{n}, \tilde{s}_{i}\right)
\end{gathered}
$$

Online Optimization with Stochastic Gradient

$$
\begin{gathered}
F(x)=E_{S}[f(x, S)] \\
\nabla F(x)=E_{S}\left[\nabla_{x} f(x, S)\right] \\
\hat{F}\left(X_{n}\right)=\frac{1}{B} \sum_{i=1}^{B} f\left(X_{n}, s_{i}\right), \quad \nabla \hat{F}\left(X_{n}\right)=\frac{1}{B} \sum_{i=1}^{B} \nabla_{x} f\left(X_{n}, \tilde{s}_{i}\right)
\end{gathered}
$$

Stochastic Gradient Descent (SGD)

$$
X_{n+1}=X_{n}-h \nabla \hat{F}\left(X_{n}\right)
$$

Stochastic Gradient Langevin Dynamics (SGLD)

$$
Y_{n+1}=Y_{n}-h \nabla \hat{F}\left(Y_{n}\right)+\sqrt{2 \gamma h} Z_{n}
$$

SGDxSGLD

Algorithm 2: SGDxSGLD: online optimization

Input: Temperature γ, step size h, number of steps N, initial X_{0}, Y_{0}, estimation error parameter Θ (when using batch means, Θ is the batch size, it controls the accuracy of \hat{F}_{n} and $\nabla \hat{F}_{n}$), threshold t_{0}, and exchange boundary \hat{M}_{v}.

$$
\begin{aligned}
& \text { for } n=0 \text { to } N-1 \text { do } \\
& \begin{array}{|l}
X_{n+1}^{\prime}=X_{n}-h \nabla \hat{F}_{n}\left(X_{n}\right) \text {; } \\
Y_{n+1}^{\prime}=Y_{n}-h \nabla \hat{F}_{n}\left(Y_{n}\right)+\sqrt{2 \gamma h} Z_{n}, \text { where } Z_{n} \sim N\left(0, I_{d}\right) ; \\
\text { if } \hat{F}_{n}\left(Y_{n+1}^{\prime}\right)<\hat{F}_{n}\left(X_{n+1}^{\prime}\right)-t_{0},\left\|X_{n+1}^{\prime}\right\| \leq \hat{M}_{V}, \text { and }\left\|Y_{n+1}^{\prime}\right\| \leq \hat{M}_{V} \text { then } \\
\mid\left(X_{n+1}, Y_{n+1}\right)=\left(Y_{n+1}^{\prime}, X_{n+1}^{\prime}\right) ; \\
\text { else } \\
\quad \mid\left(X_{n+1}, Y_{n+1}\right)=\left(X_{n+1}^{\prime}, Y_{n+1}^{\prime}\right) \text {. } \\
\text { end } \\
\text { end }
\end{array} \text {. }
\end{aligned}
$$

Output: X_{N} as an optimizer for F.

SGDxSGLD

Assumption 4. The estimation errors are sub-Gaussian.

SGDxSGLD

Assumption 4. The estimation errors are sub-Gaussian.

Under Assumptions $1,2,3$, and 4 , assuming F is strongly convex in a neighborhood of X^{*} and $h<\min \{1 /(2 L), 1 / m\}$, for any $\varepsilon>0$ and $\delta>0$, there exists

$$
N(\varepsilon, \delta)=O(\log (1 / \varepsilon))+O(\log (1 / \delta))
$$

such that for any fixed $N>N(\varepsilon, \delta)$, setting $B=O\left((\varepsilon \delta)^{-1}\right)$, we have

$$
P\left(F\left(X_{N}\right)-F^{*} \leq \varepsilon\right) \geq 1-\delta .
$$

If we hold δ and h fixed, then to achieve an ε accuracy, we need to set the number of iterations $N=\mathrm{O}(\log (1 / \varepsilon))$ and the batch size $B=\mathrm{O}(1 / \varepsilon)$. In this case, the total complexity is $O\left(\varepsilon^{-1} \log (1 / \varepsilon)\right)$.

SGDxSGLD

$$
\gamma=1, h=0.1, B=10^{3}, t_{0}=0.05, M=5
$$

SGD and SGLD

SGD

$$
h=0.1, B=10^{3}
$$

SGLD
$\gamma=0.01, h=0.1, B=10^{3}$

Literature Review

Offline: $O(\log (1 / \varepsilon))$, Online: $O\left(\varepsilon^{-1} \log (1 / \varepsilon)\right)$

Finding second order stationary point (local minimums)
> Perturbed Gradient Descent (Jin et al 2017, Jin et al 2019)

$$
X_{n+1}=X_{n}-h\left(\nabla F\left(X_{n}\right)+\frac{r}{\sqrt{d}} Z_{n}\right) \text { where } \mathrm{Z}_{n} \sim N(0, I)
$$

- Exact gradient: $O\left(\varepsilon^{-2}\right)$
- Stochastic gradient: $O\left(\varepsilon^{-4}\right)$
> Natasha2 (Allen-Zhu 2017),
> Hessian information: cubic-regularization, trust region (Nestrov and Polyak 2006, Curtis et al 2014, Agarwal et al 2017, Fang et al 2019)

Better dependence on dimension.

Literature Review

Offline: $O(\log (1 / \varepsilon))$, Online: $O\left(\varepsilon^{-1} \log (1 / \varepsilon)\right)$
Nonconvex optimization
> SGLD (Dalalyan 2017, Ragingsky et al 2017, Xu et al 2019)

- Exact gradient: $O\left(\varepsilon^{-1}\right)$
- Stochastic gradient: $O\left(\varepsilon^{-5}\right)$
$>$ Underdamped Langevin dynamics (Cheng et al 2018, Gao et al 2019)

Dependence on the spectral gap

Connection to MCMC
> Replica-exchange Langevin dynamics (Dupuis et al 2012, Chen et al 2019)

Connection to simulated annealing (Gidas 1985, Woodard et al 2009)

Complexity Analysis

Assumption 3. X^{*} is a unique global minimum. The exists ro>0, such that the sublevel set $B_{0}=\left\{x: F(x) \leq F\left(X^{*}\right)+r_{0}\right\}$ is radically convex with X^{*} being the center. F is convex in $B o$.

Complexity Analysis

Step 1. There exists a large constant M such that Y visits the set $\left\{x:\left\|x-X^{*}\right\| \leq M\right\}$ "very often".

Step 2. During each visit to the set $\left\{x:\left\|x-X^{*}\right\| \leq M\right\}$, there is a positive probability that Y will visit $B o$.

Step 3. Once Y is in $B o, X$ will be swapped there (if not there already). Then, the rest of the analysis follows standard gradient descent arguments.

Complexity Analysis: Step 1

$$
\tau_{k}=\left\{n>\tau_{k-1}: F\left(Y_{n}\right) \leq R\right\}
$$

For a properly chosen parameter $\eta, \mathrm{V}(\mathrm{x})=\exp (\eta \mathrm{F}(\mathrm{x}))$ satisfies

$$
\begin{aligned}
& E_{n}\left[V\left(Y_{n+1}^{\prime}\right)\right] \leq \exp \left(-\frac{1}{4} \eta h \lambda_{0} F\left(Y_{n}\right)+\eta h C\right) V\left(Y_{n}\right) \\
& E_{n}\left[V\left(X_{n+1}^{\prime}\right)\right] \leq \exp \left(-\frac{1}{4} \eta h \lambda_{0} F\left(Y_{n}\right)+\eta h C\right) V\left(X_{n}\right)
\end{aligned}
$$

Complexity Analysis: Step 1

$$
\tau_{k}=\left\{n>\tau_{k-1}: F\left(Y_{n}\right) \leq R\right\}
$$

For a properly chosen parameter $\eta, \mathrm{V}(\mathrm{x})=\exp (\eta \mathrm{F}(\mathrm{x}))$ satisfies

$$
\begin{aligned}
& E_{n}\left[V\left(Y_{n+1}^{\prime}\right)\right] \leq \exp \left(-\frac{1}{4} \eta h \lambda_{0} F\left(Y_{n}\right)+\eta h C\right) V\left(Y_{n}\right) \\
& E_{n}\left[V\left(X_{n+1}^{\prime}\right)\right] \leq \exp \left(-\frac{1}{4} \eta h \lambda_{0} F\left(Y_{n}\right)+\eta h C\right) V\left(X_{n}\right)
\end{aligned}
$$

For any $K \geq 0$,

$$
E\left[\exp \left(\eta h C \tau_{K}\right)\right] \leq \exp (K(2 \eta h C+\eta R))\left(V\left(X_{0}\right)+V\left(Y_{0}\right)\right)
$$

Complexity Analysis: Step 2

$$
\begin{gathered}
\tau_{k}=\left\{n>\tau_{k-1}: F\left(Y_{n}\right) \leq R\right\} \\
D=\max \{\|x-h \nabla F(x)\|: F(x) \leq R\}
\end{gathered}
$$

If $F\left(Y_{n}\right) \leq R$, for any $r>0$, there exit an $\alpha(r, D)>0$, such that

$$
P_{n}\left(\left\|Y_{n+1}^{\prime}\right\| \leq r\right)>\alpha(r, D)
$$

A lower bound for $\alpha(r, D)$ is given by

$$
\alpha(r, D) \geq \frac{S_{d} r^{d}}{(4 \gamma h \pi)^{d / 2}} \exp \left(-\frac{1}{2 \gamma h}\left(D^{2}+r^{2}\right)\right)
$$

Complexity Analysis

Step 1. There exists a large constant M such that Y visits the set $\left\{x:\left\|x-X^{*}\right\| \leq M\right\}$ "very often".

Step 2. During each visit to the set $\left\{x:\left\|x-X^{*}\right\| \leq M\right\}$, there is a positive probability that Y will visit $B o$.

Step 3. Once Y is in $B o, X$ will be swapped there (if not there already). Then, the rest of the analysis follows standard gradient descent arguments.

Conclusion

$$
\begin{aligned}
& X_{n+1}=X_{n}-h \nabla F\left(X_{n}\right) \\
& Y_{n+1}=Y_{n}-h \nabla F\left(Y_{n}\right)+\sqrt{2 \gamma h} Z_{n}
\end{aligned}
$$

Offline: $O(\log (1 / \varepsilon))$, Online: $O\left(\varepsilon^{-1} \log (1 / \varepsilon)\right)$
https://arxiv.org/pdf/2001.08356.pdf

Conclusion

$$
\begin{aligned}
& X_{n+1}=X_{n}-h \nabla F\left(X_{n}\right) \\
& Y_{n+1}=Y_{n}-h \nabla F\left(Y_{n}\right)+\sqrt{2 \gamma h} Z_{n}
\end{aligned}
$$

Offline: $O(\log (1 / \varepsilon))$, Online: $O\left(\varepsilon^{-1} \log (1 / \varepsilon)\right)$
https://arxiv.org/pdf/2001.08356.pdf

Thank you!

