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Problem definition

f
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Input-output pairs ({xlf}] Y ) ({XMJ}] 1Y )

e input: { x*/ };\i , a collection of N; points xh/

® output: y' € R

e goal: predict y* for a new {x*’j}j.\ﬁl




Fxpected Feature Map

® Let LP(X) be the set of probability measures on 2

® Let ¢ : X — A be a feature map from 2 to the Hilbert space # associated to the
kernel k¥ : X' XX - R

e Expected feature map @ : p - Ey [@p(X)] € Z

p(f) H




Existing result

Theorem (Christmann and Steinwart 2010)

Let & 1s a compact set. If ® : P(X) — A is an injective and continuous map and #
is a separable Hilbert space, then the kernel k : () X P(X) — R defined by

ku,v) = exp( = ?0G) - W), o> 0.
is universal, i.e. the associated RKHS is dense in € (A(X), R).
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Distribution Regression for Sequential Data.

[T = 800°C}

Figure 1. Simulated gases (30 particles) under different thermodynamic conditions. Higher temperatures increase the
number of collisions resulting in different large-scale dynamics.



The Expected Signature

Definition

The expected signature ES : () — T (RY) is the map ES : u = xu [S(X)] defined

element-wise for any k > 0 and any (i, ...,1,) € {1,...,d}k as

[ SCX) ) = I S\ u(dx) € R.
xeX

Definition

The kernel k%8 : & x & — R associated to the feature map S is defined as
k*'8(x, y) = (S(), SO gy



A kernel-based approach to DR

Theorem

It 2 C€p,,
defined by

(I, RY) is a compact subset of paths, then the kernel k : P(X) X P(XL) — R

(u,v) = exp( = PIES() — ESOIZ ), 0> 0.

is universal, i.e. the associated RKHS is dense in € (L (X)), R).
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Theorem

It CE

Lip

A kernel-based approach to DR

defined by

(u,v) = exp( = PIES() — ESOIZ ), 0> 0.

is universal, i.e. the associated RKHS is dense in € (L (X)), R).
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_X,X'Nlu[kSig(Xa X,)] -2

_XNlu,YNy[kSig(Xa Y)] +

(I, RY) is a compact subset of paths, then the kernel k : P(X) X P(XL) — R
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A pathwise approach to DR

The Stone-Weierstrass Theorem for paths

Any continuous function on a compact set of paths is well approrimated by a finite linear
combination of the terms of the Signature

*Spath S

Distribution on paths —=—> Pathwise ES - T (T(Rd))
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Fxperiments

Inferring the temperature of a gas

Predictive MSE

Model

few collisions many collisions
DeepSets  (1.4£0.7)-107Y  (1.3£0.9)-107!
RBF-RBF (2.1 T 0.9) . 1072 (1.2 T 0.5) .10~1
RBF-GA (2.8 T :_.1) . 1072 (4.9 T 5.2) . 1072
kerES (2.5+1.6)-107% (8.7+4.6)-107°
linSES (1.24+1.1)-107% (7.6 £5.8)-10"°

Table 3. We go from the “few collisions” settings to the “many

collisions” by augmenting the radius of the particles.

few collisions many collisions



Fxperiments

Inferring the crop yield of a region

'y =9.47 t/ha 'y =5.42 t/ha 'y =8.42t/ha
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Figure 3. Normalised time-series of temperature, humidity and precipitation, measured over 10 different locations
across a region within a year.



Fxperiments

Inferring the crop yield of a region

Predictive MSE

Model

0% dropped [running time] 30% dropped [running time]
RBF-RBF  0.671 + 0.147 [2h17m] 0.819 + 0.243 [1h19m)]
kerES 0.563 & 0.277 [0m26s 0.583 + 0.146 [0m21s
inSES 0.616 4 0.158 [1m33s 0.646 & 0.150 [1m07s

Table 2. The fully observed time-series are of length 1,696 and the yield is in tons per hectar.
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